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Abstract

This paper introduces a time-weighted di!erence-in-di!erences (TWDID) esti-

mator for settings with few pre-treatment periods. Unlike conventional estimators,

which use fixed pre-treatment weights, TWDID assigns variance-minimizing weights

determined by the within-group covariance matrix of outcomes. The proposed esti-

mator is e”cient in the considered class when parallel trends hold across all periods.

I introduce violations of parallel trends through common factors that have hetero-

geneous e!ects on the outcome. I show that the weights reduce the influence of the

confounding factors, yielding a smaller bias than conventional DiD estimators under

mild assumptions on the factors. Revisiting the impact of a cap-and-trade program on

NOx emissions, TWDID yields smaller and more precise estimates than conventional

approaches.
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1 Introduction

The presence of interactive fixed e!ects in the untreated potential outcomes leads to biased

di!erence-in-di!erence (DID) estimates of average treatment e!ects. While the estimators

of Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021) and Chan and Kwok (2021)

address this issue in large T panels, the question remains how to account for common

factors in short T panels.

In this paper, I introduce a time-weighted DID (TWDID) approach to estimate the av-

erage treatment e!ect on the treated (ATT) of a binary treatment. While the conventional

DiD estimator considers only the most recent pre-treatment period, TWDID uses a linear

combination of pre-treatment periods that minimizes the variance of the resulting estima-

tor. The corresponding pre-treatment weights are estimated from the sample covariance

of outcomes. TWDID remains unbiased under the assumption that parallel trends holds

across all periods, since then the ATT is identified for any set of pre-treatment weights

that sum to one. The proposed estimator therefore provides substantial e”ciency gains in

those cases.

Next, I consider violations of parallel trends in an interactive fixed e!ects model. In this

setup, unobserved time-varying common factors have a time-invariant but heterogeneous

e!ect on the outcome. If those correlate with the treatment assignment, parallel trends

no longer holds across all periods, but only with respect to unknown weighted averages

of pre-treatment periods. This leads to a bias in the conventional DiD estimator that

is proportional to the di!erences between the pre-treatment and post-treatment factors.

Addressing the bias therefore requires pre-treatment weights that balance the confounding

factors.

The main take-away of the paper is that TWDID, besides being e”cient under par-

allel trends, typically reduces bias compared to conventional DiD. This works because
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the confounding factors that generate the bias also a!ect the variance of the outcomes.

Variance-minimizing weights therefore adjust to the dynamics of the factors without need-

ing to estimate the factors directly. However, since the variance is also a!ected by noise,

the bias is generally not eliminated completely. This is inherent to the setting, since latent

factors can generally not be consistently recovered without stronger conditions when only

a few pre-treatment periods are available.

Formally, I show that the variance-minimizing weights shrink towards noise-minimizing

weights, leading to an attenuation bias that depends on the alignment between noise dy-

namics and factor dynamics.TWDID is asymptotically unbiased in the most favorable case

in which noise dynamics and factors are perfectly aligned. I present su”cient conditions on

the noise-minimizing weights under which the reduction in bias relative to conventional DiD

is guaranteed. Moreover, the bias vanishes asymptotically if the factor strength increases

with the sample size.

The theoretical results have implications about the empirical practice of controlling for

‘pre-trends’, which are discussed also in Ste!ens and Stuhle (2025). The TWDID estimator

and the associated time weights can be jointly estimated in a linear regression of di!erences

in outcomes on the treatment augmented with individual pre-trends. This provides useful

insights for practitioners. If parallel trends holds across all periods, the pre-treatment

di!erences in outcomes are uncorrelated with the treatment assignment. Therefore, the

coe”cient on the treatment still identifies the ATT when augmenting the regression. At

the same time, it increases precision if the pre-trends are predictive of the changes in the

outcome that are explained by the treatment. When parallel trends is violated, the pre-

trends act as noisy proxies of the confounding factors. The remaining bias in TWDID is

therefore similar to bias from measurement error, resulting in attenuation towards noise-

minimizing time weights.

I show that the TWDID estimator and the estimated time weights are jointly asymptot-
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ically normal under large N asymptotics. Standard errors of the estimated treatment e!ect

need to account for the presence of estimated weights. This is achieved by conventional

cluster-robust variance estimators applied to the joint estimating equations. Moreover, this

result allows researchers to test restrictions on the variance-minimizing time weights, which

serves as useful diagnostic check.

I revisit the study by Deschenes, Greenstone, and Shapiro (2017), who employ a triple-

DiD design to estimate the e!ect of a cap-and-trade program on NOx emissions. In this

setting, interactive fixed e!ects may arise if common shocks, such as the business cycle or

weather, a!ect counties in a heterogeneous way. Applying TWDID leads to smaller esti-

mated treatment e!ects than conventional DiD or two-way fixed e!ects estimators suggest,

while at the same time producing narrower confidence intervals. The results suggest that

part of the decline in emissions captured by conventional DiD is attributable to confound-

ing aggregate shocks, illustrating that time-weighting can reduce this bias while improving

precision.

Related literature. The TWDID estimator is closely related to the synthetic DID

(SDID) estimator of Arkhangelsky et al. (2021). Both approaches use time weighting

to balance the unobserved factors, but the weighting scheme di!ers in several ways. First,

SDID estimates the time weights using only the untreated units, while TWDID estimates

them from the full sample and thereby exploits information from the treated units’ dy-

namics. Second, SDID imposes a non-negativity constraint on the time weights, providing

regularization in long panels. TWDID does not impose such constraints, thus allowing

for negative time weights. Finally, SDID also estimates control unit weights, which fur-

ther reduces bias, but requires a large number of pre-treatment periods for consistency.

When T is small, SDID may exacerbate bias compared to DiD, as suggested by Monte

Carlo experiments in this paper, whereas TWDID consistently improves upon DiD in such
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settings.

Other approaches to identify and estimate treatment e!ects in short T panels with inter-

active fixed e!ects, reviewed recently in Brown and Butts (2022), usually involve additional

moment conditions. Under those, one can account for latent factors for example through

forward-orthogonal di!erencing as in Ahn, Lee, and Schmidt (2013) or using time-invariant

observable covariates with constant e!ect on the outcome as instruments (Callaway and

Karami, 2022). Instead, TWDID exploits heterogeneity of the factor loadings.

This paper relates to other discussions around e”ciency of DiD approaches when par-

allel trends holds across multiple periods, for example Marcus and Sant’Anna (2021) ,Roth

and Sant’Anna (2023), Borusyak, Jaravel, and Spiess (2024), Harmon (2024), and Chen,

Sant’Anna, and Xie (2025). Allowing violations of parallel trends, approaches by Manski

and Pepper (2018) and Rambachan and Roth (2023) partially identify the ATT by restrict-

ing the way those violations evolve over time. Relative to their findings, this paper shows

how the ATT can be recovered with “misspecified” e”cient DiD estimators by relating the

parallel trend violations to the variance in the outcomes.

This paper also relates to findings in the literature on synthetic control (SC) esti-

mators (Abadie, Diamond, and Hainmueller, 2010; Xu, 2017; Abadie and L’hour, 2020;

Ferman, 2021; Ferman and Pinto, 2021; Ben-Michael, Feller, and Rothstein, 2021). They

use unit weights to balance time-invariant unobserved characteristics between treated and

untreated units, which are estimated with a time-series regression over the pre-treatment

periods. Consistent estimation requires a large number of pre-treatment periods, strict bal-

ancing conditions on the loadings and restrictions on the serial dependence of the errors.

Similarly, TWDID requires a large number of control units and balancing conditions on

the factors. Exploiting independence over the cross-section, however, TWDID estimation

remains reliable when the data exhibits strong serial dependence.

When both N and T are large, one can use results from linear panel data models with
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factor structures (Pesaran, 2006; Bai, 2009) to recover a long run average treatment e!ect.

For example, Gobillon and Magnac (2016) apply the estimator of Bai (2009) to estimate

the average treatment e!ect jointly with the factor structure. Using principal component

analysis, Chan and Kwok (2021) construct factor proxies, which can then be used in a

factor-augmented regression. In short T panels, however, these estimators are generally

inconsistent.

The remainder of the paper is structured as follows. Section 2 introduces the interactive

fixed e!ects model and the TWDID approach. Formal theoretical results are devoted to

Section 3 Section 4 illustrates the theoretical results and finite sample properties with

simulations. Section 5 contains the application and Section 6 concludes.

2 A time-weighted di!erence-in-di!erences approach

2.1 Setup

Using a panel data set for treated and untreated units, we wish to estimate the e!ect of

a policy intervention starting in period t = T0. That is, we seek to estimate the average

treatment e!ect on the treated

ωt := ATTt = E[yit(1)→ yit(0)|Di = 1]

in the post-treatment periods t = T0 + 1, . . . , T , where yit(1), yit(0) are the potential out-

comes of unit i in period t, and Di ↑ {0, 1} indicating whether unit i is ever treated. The

researcher observes yit = Diyit(1) + (1→Di)yit(0) for a large number of units i = 1, . . . , N

and a small number of periods t = 1, . . . , T , covering at least two pre-treatment periods

(T0 ↓ 2).

The untreated potential outcomes are generated by an interactive fixed e!ects model,

yit(0) = εi + ϑt + ω
→
ift + ϖit (1)
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where εi are unit fixed e!ects, ϑt are time fixed e!ects, ft and ωi are r-dimensional vectors

of common factors and loadings, and ϖit is an idiosyncratic error component. Such unob-

served factor structures, ω→
ift, are present in many economic settings. In microeconomic

applications, ωi can be thought of a vector of unobserved, time-invariant characteristics of

individual i. In contrast to the fixed e!ects εi, they have a time-varying impact on the

outcome yit measured by ft. In macroeconomic applications, the factors ft are unobserved

common shocks (e.g. technology or weather shocks) that, in contrast to the time fixed ef-

fects ϑt, have an heterogeneous impact ωi on unit i. This DGP nests important cases such

as deterministic, linear trends when ft = t. It also nests the two-way fixed model, when all

factors are constant over time (ft = f), in which case the factor structure is absorbed by

the unit fixed e!ects.

To simplify notation, let Nj = {i : Di = j}, j = 0, 1 denote the sets of untreated and

treated units in the sample, respectively. Let N0 =
∑N

i=1(1→Di) and n0 =
N0
N denote the

number and share of untreated units, respectively. The factors are stacked into the T ↔ r

matrix F = [f1, . . . ,fT ]→, and similarly εi = (ϖi,1, . . . , ϖi,T )→, yi(d) = (yi,1(d), . . . , yi,T (d))→

and yi = (yi,1, . . . , yi,T )→.

Consider the following assumptions.

Assumption 1 (No anticipation). yit(1) = yit(0) for all t ↗ T0 and all i = 1, . . . , N .

Assumption 2 (Potentially confounding loadings). The ωi are random vectors satisfy-

ing E[ωi|Di = d] = µ
(d)
ω with |µ(d)

ω | < ↘ for d = 0, 1 and Var[ωi|Di] = ”ω,i with

limn↑↓
1
Nd

∑
i↔Nd

”ω,i = ”
(d)
ω for d = 0, 1.

Assumption 3 (Parallel trends conditional on time-invariant unobservables). For every i,

E[εi|εi, Di,ωi,F ] = 0. Moreover, E[εiε→i|Di] = ”ε,i with limn↑↓
1
Nd

∑
i↔Nd

”ε,i = ”
(d)
ε for

d = 0, 1; and ”ε = n↗1
0 ”

(0)
ε + (1→ n0)↗1

”
(1)
ε is a positive definite T ↔ T matrix.
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Assumption 4 (Random sampling). (yi(1),yi(0), εi,ωi) are independent over the cross

section; n0 ↑ (0, 1) is constant as N ≃ ↘, and T0 ↓ 2.

Assumption 5 (Treatment e!ect heterogeneity). The vector of individual treatment e!ects

ϑi = (ωi,T0+1, . . . , ωi,T )→, ωit = yit(1) → yit(0), satisfies
1
N

∑
i Di(ϑi → ϑ )(ε→i, ω̇

→
i)
→ p→≃ 0 where

ω̇i = ωi → E[ωi|Di].

Assumption 6 (Confounders do not perfectly correlate with treatment). Let ϖω = µ
(1)
ω →

µ
(0)
ω , ”ω = n↗1

0 ”
(0)
ω + (1→ n0)↗1

”
(1)
ω .

1. The loadings satisfy limϑ↑0 ϖ
→
ω(”ω + ϱI)↗1

ϖω < w̄ω for some finite constant w̄ω.

2. The factors satisfy rank F = r with 0 < r < T0. Moreover, d
→
MFad > w̄f for

some constant w̄f > 0 and for all linear combination of post-treatment dummies

d ↑ span {et}t>T0 , where Fa = [ϱ,F ], et the t-th unit basis vector in RT and ϱ =

(1, . . . , 1)→.

Assumption 1 ensures that we observe the untreated potential outcome of the treated

units prior to the treatment. It would be violated in presence of anticipation e!ects, i.e.

when the treatment a!ects the outcome before it actually starts. If su”cient pre-treatment

observations are available, one can estimate the anticipation e!ects as it is commonly done

in event-study designs.

Assumption 2 is a central characteristic of the model. It allows the loadings ωi to di!er

systematically between treated and untreated units. The loading imbalance ϖω = µ
(1)
ω →µ

(0)
ω

measures how much more (or less) the treated units are on average a!ected by the common

factors ft. It nests the two-way fixed e!ects model for constant loadings ωi = ω. In

that case, the factor structure ω
→
ift would be entirely absorbed by the time fixed e!ect

ϑ̃t = ϑt + ω
→
ft. Moreover, it allows weak factors, as it prevents neither µ(j)

ω nor ”ω,i from

diminishing in large samples.
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Under Assumption 3, the treatment assignment is strictly exogenous once conditioned

on the loadings, fixed e!ects and the factors. This implies parallel trends in the un-

treated potential outcome yit(0) conditional on the unobserved loadings, while allowing for

heteroskedasticity and arbitrary serial dependence of the idiosyncratic errors. Lastly, As-

sumption 4 is a conventional restriction that ensures independence of potential outcomes,

loadings, and idiosyncratic errors over the cross section. It also requires the number of

treated and untreated units to grow at the same rate.

Assumption 5 imposes that within the treated units, the treatment e!ects are (asymp-

totically) uncorrelated with the idiosyncratic errors and the loadings, which is trivially

satisfied when treatment e!ects are constant. When treatment e!ects are heterogeneous, it

allows together with Assumption 3 to decompose the within-group covariances of outcome

into three separate parts resulting from the factor structure, the idiosyncratic errors, and

the treatment e!ect heterogeneity, respectively. While this is not strictly necessary for the

main findings, it eases exposition and interpretation.

Assumption 6 imposes mild conditions on the unobserved confounders. While the basic

distributional results of this paper are derived without this assumption, it is essential to

guarantee bias reduction properties of the estimator. The first statement rules out multi-

collinearity between the loadings ωi and the treatment assignment Di, which is similar to

requiring overlap in the propensity score under unconfoundedness, see for instance Imbens

and Wooldridge (2009). If the loadings are correlated with Di, it requires a non-singular

covariance matrix ”ω. However, it does not rule out constant loadings ωi = ω. Similarly,

the second statement requires su”cient variation in the pre-treatment factors, unless the

factors are constant over time. It therefore excludes factors that are constant pre-treatment

but vary after onset of the treatment. In that case it would be impossible to distinguish

the e!ect from the factors from those of the treatment, even if the factors were observed.

The common factors F can be viewed as realizations from some deterministic or stochas-
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tic process, where the number of factors r is unknown and fixed. All results should be

interpreted conditional on F .

The following sections focus on the case of one treated period t = T , and denotes the

relevant ATT by ω = ωT . The cases of multiple treated periods and staggered adoption are

discussed in Appendix A.2.

2.2 Identification and estimation with fixed time weights

This paper considers estimators based on sample mean di!erences ŷt = ȳ1,t → ȳ0,t in each

period, where ȳd,t =
1
Nd

∑
i:Di=d yit, d = 0, 1 are the sample means of observed outcomes

within untreated and treated units in period t. Denoting ŷ = (ŷ1, . . . , ŷT ), the factor model

(1) implies that

ŷ = eω + ϱϖϖ + F ϖω + û,
⇐
N û

a⇒ N (0,#) (2)

where the post-treatment dummy e = (0, . . . , 0, 1)→ is the regressor of interest, ϱ = (1, . . . , 1)→

is a constant vector of ones, and # the limiting covariance matrix of ŷ. Therefore, iden-

tifying ω can be formulated as time-series regression problem where the factors F act as

unobserved confounders.

This paper focuses on time-weighted DiD estimators

ω̂(v) = ŷT →
∑

t↘T0

vpre,tŷt = v
→
ŷ, v ↑ V = {v ↑ RT : [e, ϱ]→v = (1, 0)}

These estimators compare di!erences in the treated period to a weighted average of pre-

treatment di!erences, where vpre = (vpre,1, . . . , vpre,T0)
→ denotes the associated pre-treatment

weights. It is more convenient to carry out the theoretical analysis in terms of the full

vector of time weights v = (→v
→
pre, 1)

→. The set V restricts the weights to sum to zero

and sets the post-treatment weight equal to one. Therefore, the pre-treatment weights

vpre = (→v1, . . . ,→vT0)
→ must sum to one.
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Many prominent DiD estimators correspond to a particular choice of v. One exam-

ple is the two-way fixed e!ects (2wfe) estimator, which weights all pre-treatment peri-

ods equally. It corresponds to v2wfe = (→1/T0, . . . ,→1/T0, 1), An equivalent expression is

v2wfe = X(X →
X)↗1

c with X = [e, ϱ] and c = (1, 0)→, which are the weights implied by

the ordinary least-squares estimator in (2). Another example is the canonical DiD esti-

mator, which uses the most recent pre-treatment period as ‘base-period’. It corresponds

to vdid = (0, . . . , 0,→1, 1)→ or equivalently vdid = $
→
$X(X →

$
→
$X)↗1

c, where $ is the

T ↔T matrix taking first di!erences, i.e. $x = (x1, x2→x1, . . . , xT →xT↗1)→ for any vector

x ↑ RT .

A time-weighted DiD estimator ω̂(v) is unbiased for ω under a weighted parallel trends

assumption

E
[
yi,T (0)→

∑

t↘T0

vpre,tyit(0)|Di = 1
]
= E

[
yi,T (0)→

∑

t↘T0

vpre,tyit(0)|Di = 0
]

which restricts the expected change in yit(0) with respect to a particular weighted average of

pre-treatment periods given by v. More compactly, the condition reads as v→(µ(1)→µ
(0)) =

0, where the vector µ(d) = E[yi(0)|Di = d] contains the mean untreated potential outcome

in treatment group d = 0, 1 stacked over all periods.

The main challenge is that parallel trends may only hold for v in an unknown subset

V0 ⇑ V. In the interactive fixed e!ects model (1), this set is V0 = {v ↑ V : v
→
F ϖω = 0},

since µ(1)→µ
(0) = ϱϖϖ+F ϖω and v

→
ϱ = 0. In the special case of balanced loadings (ϖω = 0),

parallel trends hold with respect to all (combinations of) pre-treatment periods, and any

choice of weights v ↑ V = V0 results in an unbiased estimator. However, in the general

case, V0 depends on the unobserved factors F . Without further restrictions on F , standard

choices of v lead to biased estimates of the ATT.

This paper proposes to use weights v≃ that minimize the variance of ω̂(v). In the setup

of this paper, var[ω̂(v)] = v
→
#v/N , and # = var[ŷ] · N can be consistently estimated
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by conventional variance estimators of mean di!erences. The smallest variance among all

time-weighted DiD estimators is obtained for

v
≃ = argmin

v↔V
v
→
#v = #

↗1
X(X →

#
↗1
X)↗1

c

which I refer to as variance-minimizing weights. The Gauss-Markov Theorem tells us that

ω̂(v≃) corresponds to the GLS estimator in (2) that ignores the latent factors F .1 Since

ω̂(v≃) is unbiased if ϖω = 0, it is e”cient among time-weighted DiD estimators when

parallel trends holds for all v ↑ V. For example, for i.i.d. homoskedastic errors û, the

covariance matrix # = ς2
yI is diagonal, ω̂(v≃) corresponds to the 2wfe estimator with equal

pre-treatment weights. For random walk errors, # = LL
→ with L a lower-diagonal matrix

taking cumulative sums, so #
↗1 = $

→
$. Then ω̂(v≃) corresponds to the canonical DiD

estimator, known to be e”cient under these error dynamics (Harmon, 2024).

In the setup of this paper, variance-minimizing weights also have favorable bias proper-

ties when ω ⇓= 0. With heterogeneous loadings ωi, the covariance matrix # = F”ωF
→+”ε

is informative about the confounding factors. Minimizing the variance v
→
#v therefore re-

duces the bias b(v) = v
→
F ϖω compared to vdid in many cases. The remainder of this paper

presents formal conditions under which such bias reduction properties can be guaranteed.

2.3 Joint estimation of time weights and the treatment e!ect

This section introduces the estimators ω̂(v̂) and v̂ targeting v
≃ and ω from a practical point

of view. Formal distributional results are presented in Section 3.

The starting point is the variance estimator of mean di!erences ŷ, given by

#̂ = (1→ n0)
↗1
#̂1 + n↗1

0 #̂0, #̂d =
1

Nd

∑

i↔Nd

(yi → ȳd)(yi → ȳd)
→, d = 0, 1

where #̂d, d = 0, 1 are the sample covariance matrices of observed outcomes within un-

treated and treated units. The estimated weights result from plugging in #̂ into the general

1
I thank Dmitry Arkhangelsky and an anonymous referee for pointing me in this direction.
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expression for v≃,

v̂ = argmin
v↔V

v
→
#̂v = #̂

↗1
X(X →

#̂
↗1
X)↗1

c (3)

which are well-defined in short panels as long as Nd ↓ T . The resulting time-weighted DiD

(TWDID) estimator ω̂(v̂) = v̂
→
ŷ can be interpreted as the feasible GLS estimator in (2)

and is the main object of interest in this paper.2

A useful insight is that ω̂(v̂) and v̂ can be jointly estimated from a linear regression.

Substituting the conditions, the time weights can be expressed as

v = vdid →Qς = (→ς
→, ϱ→ς → 1, 1)→

where ς ↑ RT↗2 are the weights of the first T → 2 periods and Q = [IT↗2,→ϱ,0]→ is a

T ↔ T → 2 matrix whose transpose takes long di!erences with respect to period t = T0.

This is without loss of generality, since the columns of Q form a basis of {X →
v = 0}.

Let ẏi,pre = Q
→
yi = (yi,1 → yi,T0 , . . . , yi,T0↗1 → yi,T0)

→ be the vector of T → 2 unit-specific

’pre-trends’. Then ω̂(v̂) and v̂ = vdid →Qς̂ solve the cross-sectional regression problem

min
ϱ,ω,ς

Mn(ω,ς, ϑ), Mn(ω,ς, ϑ) =
∑

i

p↗1
i (ẏi,post → ϑ → ωDi → ẏ

→
i,preς)

2. (4)

Here the di!erence in outcomes ẏi,post = y
→
ivdid = yi,T → yi,T0 is regressed on the treatment,

controlling for all T → 2 pre-trends, and weighting observations by their inverse propensity

score pi = Di(1→ n0)2 + (1→Di)n2
0. The canonical DiD estimator ω̂(vdid) can be obtained

from (4) when omitting the pre-trends from the regression by restricting ς = 0; similarly

the 2wfe estimator ω̂(v2wfe) follows from restricting ς = ϱ/T0. The regression formulation

also shows that ω̂(v̂) and v̂ are invariant to the unit fixed e!ects εi, since the outcomes

only enter in di!erences. They are also invariant to time fixed e!ects ϑt, which are fully

absorbed by the constant ϑ in the regression.

2
Previous versions of this paper considered estimating the time weights only from the untreated units

argminv→V v
↑!̂0v. The results continue to hold in this case when restricting heteroskedasticity, i.e. ”(0)

ω =

”(1)
ω and ”(0)

ε = ”(1)
ε .
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The coe”cients of the pre-trends exactly recover the estimated weights v̂ defined in (3).

This can be verified by tracing out ϑ and ω from (4). Writing ẏi,post → ẏ
→
i,preς = y

→
iv, it

follows that the regression problem for a given vector of weights is solved by ω̂(v) = v
→
ŷ

and ϑ̂(v) = v
→
ȳ0. The estimated weights therefore solve minv↔V Mn(v, ϑ̂(v), ω̂(v)) with

objective function

Mn(v, ϑ̂(v), ω̂(v)) =
∑

i

p↗1
i ((yi → ȳDi)

→
v)2 = Nv

→
#̂v

which coincides with the definition of v̂.

The regression representation highlights the gains from using data-driven time weights

in terms of e”ciency and bias reduction from another angle. If parallel trends holds with re-

spect to all pre-treatment periods, the pre-trends ẏi,pre are uncorrelated with the treatment

assignment Di. Therefore, restricting ς = 0 does not change the estimand, since ω(v≃) = ω .

Still, controlling for pre-trends increases precision if the (population) variance-minimizing

weights v
≃ = vdid → Qς

≃ di!er from vdid, i.e. if the population regression coe”cient of

the pre-trends ς
≃ is di!erent from zero. If parallel trends does not hold in all periods,

controlling for ẏi,pre changes the estimand ω(v≃) = ω + b(v≃). A bias term remains, because

ẏi,pre are noisy proxies of the confounding changes in factors Q→
Fωi.

Another advantage of the one-step formulation is that standard errors for ω̂(v̂) and v̂

can be easily constructed from usual cluster-robust variance estimators of the form ”̂ =

Ĥ
↗1
ŜĤ

↗1, where ” is the limiting variance of φ̂ = (ω̂(v̂), ς̂ →, ϑ̂)→. This allows researches

to conduct inference on the variance-minimizing weights v
≃. A useful diagnostic test is

whether conventional DiD is e”cient under parallel trends, corresponding to the restriction

v
≃ = vdid.

Section 3.1 defines those formally and shows their asymptotically validity under rela-

tively mild conditions. Extensions to multiple treated periods, staggered adoption, and

including deterministic trends are discussed in Appendix A.1.
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2.4 Relation to synthetic DiD and other approaches

While this paper focuses on the class of time-weighted DiD estimators in short panels,

many other approaches to estimate the ATT have been studied in presence of interactive

fixed e!ects.

A closely related approach proposed for large N large T panels is the synthetic DID

estimator of Arkhangelsky et al. (2021), which weights both the pre-treatment periods and

the untreated units. Specifically, the SDID estimator ω̂sdid = ω̂(v̂sdid, ↼̂) is constructed from

ω̂(v,↼) = v
→(ȳ1 → ȳ0(↼)), where ȳ0(↼) =

∑
Di=0 φiyi the weighted average of control unit

outcomes, typically referred to as synthetic control. The weights ↼̂sdid, v̂sdid = (→v̂
→
pre, 1)

→

are obtained from the penalized regressions

min
ε↔!N0 ,ϖ

∑

t↘T0

(ȳ1,t → ε → φ→y0,t → ϱ↼→
↼)2, min

vpre↔!T0 ,ς

∑

Di=0

(yi,T → ϑ → v
→
preyi,pre)

2 (5)

where ϱ > 0 is a penalty term in the unit weight estimation and #k = {x ↑ Rk : x
→
ϱ =

1, xi ↓ 0} restricts the weights to be non-negative and sum to one. The TWDID estima-

tor ω̂(v̂), besides having equal control unit weights, uses more flexible time weights that

di!er from v̂sdid in two aspects. First, v̂ is estimated from the whole sample, while v̂sdid is

estimated only from the untreated units. TWDID therefore takes into account additional

information from the dynamics in outcomes of the treated units. As a consequence, it re-

mains variance-minimizing under heteroskedasticity, in particular when #1 ⇓= #0. Second,

SDID imposes a non-negativity constraint on the time weights, which provides necessary

regularization when T0 is large. TWDID lifts this constraint as it is not required when T0

is small.

Next, the synthetic control (SC) estimator (Abadie, Diamond, and Hainmueller, 2015;

Abadie et al., 2010) in its original form is ω̂sc = ω̂(0, ↼̂), while Ferman and Pinto (2021)

consider a demeaned version ω̂dsc = ω̂(ϱ/T0, ↼̂) which corrects for pre-treatment di!erences.

TWDID, using time weights estimated from a large cross-section, can be thought of as
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a “transposed” variant of the demeaned synthetic control estimator that use control unit

weights estimated from a large number of pre-treatment periods.

I conclude this section with a motivation for allowing negative time weights in short

T settings. Generally, researchers may find extrapolation over time more acceptable than

extrapolation over the cross-section. For example, negative pre-treatment weights are re-

quired to account for unit-specific linear trend, which is common in empirical practice.

When T is fixed, the unrestricted time weights consistently estimate the corresponding

minimizers of the population covariance, as formally shown in the next section. There-

fore, observing negative time weights carries useful information: it suggests the presence

of aggregate shocks (such as linear trends) which require extrapolation.

3 Theoretical results for short panels

This section formalizes the theoretical properties of ω̂(v̂), focusing on the case of one

treated period. The cases of multiple treated periods and staggered adoption are discussed

in Appendix A.2. All proofs are in the appendix.

3.1 Baseline results under minimal assumptions on the factors

I first establish asymptotic normality of ω̂(v̂) around ω + b(v≃) without restricting the

factors. A corollary of this result is asymptotic e”ciency of ω̂(v̂) in the class of time-

weighted DiD estimators when parallel trends holds for all periods, in which case b(v≃) = 0.

I begin by formalizing the properties of time-weighted DiD estimators with fixed weights.

Lemma 1. Let Fa = [F , ϱ], ωa,i = (ω→
i, εi)→, µ

(d)
ω,a = E[ωa,i|Di = d] and ϖω,a = µ

(1)
ω,a → µ

(0)
ω,a.

Suppose Assumptions 1-5 and 7 hold. Then

1.
⇐
N(ŷ → µ)

d→≃ N (0,#y) as N ≃ ↘ with µ := E[ŷ|F ] = eω + Faϖω,a and limiting

variance #y = Fa”ωaF
→
a +”ε + ς2

ϱee
→
. Moreover, #̂

p→≃ #y.
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2. For any matrix X with rank X = r ↗ T and any positive definite matrix A

with rank A = T it holds that minv: v→X=c v
→
Av = c

→(X →
A

↗1
X)↗1

c at vmin =

A
↗1
X(X →

A
↗1
X)↗1

c for any c ↑ Rr
.

The first point ensures asymptotic normality of the mean di!erences ŷ with a limiting

variance that can be consistently estimated. This is a natural starting point when modeling

potential violations of parallel trends, see for example Rambachan and Roth (2023), and

motivates the limiting regression problem in (2). An immediate consequence is asymptotic

normality of ω̂(v) = v
→
ŷ for given weights v:

⇐
N(ω̂(v)→ ω → b(v))

d→≃ N (0,v→
#v + ς2

ϱ )

where b(v) = v
→
µ → ω = v

→
F ϖω is the first order bias term coming from correlations v→

F

between the weights and the confounding factors over time; and correlations between the

treatment Di and the unobserved characteristics ωi over the cross section, captured by

ϖω. The limiting variance is determined by the choice of v through the quadratic form of

# = F”ωF
→+”ε, and treatment e!ect heterogeneity ς2

ϱ that is not a!ected by the choice of

v. Since v
→
ϱ = 0, the estimator is (by construction) invariant to unobserved heterogeneity

that is constant over time, including the unit fixed e!ects εi.

The second point of Lemma 1 gives an explicit expression for the minimizer of a

quadratic form under linear equality constraints. Applied to X = [e, ϱ], A = # and

c = (1, 0)→, it yields the weights v≃ = #
↗1
X(X →

#
↗1
X)↗1

c. They define the time-weighted

DiD estimator ω̂(v≃) which has the smallest variance ς2
min = (v≃)→#v

≃+ς2
ϱ . Unbiasedness is

immediate when ϖω = 0. It follows that ω̂(v≃) is the e”cient time-weighted DiD estimator

of ω when parallel trends holds for all pre-treatment periods. In other cases, unbiasedness

requires F →
v
≃ = 0. Naturally, this is only the case under further assumptions on the factors,

which are discussed in Section 3.2.

Consider now the properties of the feasible TWDID estimator ω̂(v̂). The estimated
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weights v̂ obtained from #̂ converge in probability to v
≃, and therefore ω̂(v̂)

p→≃ ω + b(v≃).

However, the weight estimation uncertainty a!ects the limiting variance of ω̂(v̂), which

becomes clear when decomposing

ω̂(v̂) = ω + b(v≃) + (v̂ → v
≃)→F ϖω + û

→
v
≃ +Op(1/N)

with û = ŷ→µ. The weight estimation uncertainty v̂→v
≃ a!ects the limiting distribution

unless ϖω = 0. This is in line with the properties of two-step estimators, discussed for

example in Newey and McFadden (1994). Generally, estimation uncertainty in the first-

step v̂→v
≃ a!ects the limiting distribution of the second step estimator ω̂(v̂) whenever the

second step estimand ω + b(v) depends on the nuisance parameter v. In this setup this is

the case whenever ϖω ⇓= 0.

Asymptotic normality of ω̂(v̂) can be established by writing v̂ and ω̂(v̂) as the solution

the cross-sectional regression problem introduced in (4). This is done in the following

theorem.

Theorem 1. Suppose Assumptions 1-5 and 7 hold. Let φ = (ω,ς →, ϑ)→, v = vdid → Qς

and zi = (y→
i, Di)→ and wi = (Di, ẏi,pre, 1)→. Then φ̂ = (ω̂(v̂), ς̂, ϑ̂)→ is the unique solution to

∑
i g(zi;φ) = 0 with g(zi;φ) = p↗1

i wi(ẏi,post →w
→
iφ). Moreover,

⇐
N(φ̂ → φ

≃)
d→≃ N (0,”), ” = H

↗1
SH

↗1

with φ
≃ = (ω + b(v≃),ς≃, ϑ≃), H = lim 1

n

∑
i E[wiw

→
i|F ] and S = lim 1

n

∑
i E[wiw

→
i(ẏi,post →

w
→
iφ

≃)2|F ]. The sandwich estimator satisfies ”̂ = Ĥ
↗1
ŜĤ

↗1 p→≃ ”.

We see that ω̂(v̂) is asymptotically normal around ω + b(v≃). Appendix B.2 derives the

limiting variance explicitly as

ς2
ϱ̂ = ς2

min + ϖ
→
ωF

→
”v̂F ϖω + ϖ

→
ωF

→
”ϱ̂ ,v̂

where ”v̂ is the limiting variance of v̂ and ”ϱ̂ ,v̂ the covariance between ω̂(v≃) and v̂. The

take-away is that for ϖω ⇓= 0, weight estimation uncertainty keeps the variance of ω̂(v̂)
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above the lower bound ς2
min even asymptotically. A naive plug-in estimator v̂

→
#̂v̂

p→≃

ς2
min therefore underestimates the variance of ω̂(v̂), and has to be adjusted for the weight

estimation uncertainty. The last statement of Theorem 1 assures that the sandwich variance

estimator ”̂ correctly captures all sources of uncertainty.

A corollary of Theorem 1 is asymptotic equivalence of ω̂(v̂) and ω̂(v≃) under ‘small’

violations of parallel trends, i.e. when
⇐
Nϖω ≃ 0. Therefore, ω̂(v̂) is e”cient in the

class of time-weighted DiD estimators when parallel trends violations are asymptotically

negligible.

Corollary 1. Suppose Assumptions 1-5 and 7 hold. Then
⇐
N(ω̂(v̂)→ ω)

d→≃ N (0, ς2
min)

as n ≃ ↘ with ς2
min = c

→(X →
#

↗1
X)↗1

c the e!ciency bound of time-weighted DiD estima-

tors provided that
⇐
Nϖω ≃ 0.

Practically, this result promises e”ciency gains in conventional event-study settings, and

encourages applied researchers to use TWDID whenever they are confident that parallel

trends holds across all periods. This finding is similar to results Marcus and Sant’Anna

(2021), who study the optimal GMM estimator of the ATT under this assumption.

3.2 Conditions for bias reduction upon conventional DiD

I proceed with a formal discussion of the remaining bias b(v≃) that occurs when parallel

trends does not hold with respect to all pre-treatment periods, i.e. ϖω ⇓= 0. I derive an

analytical expression of the bias b(v≃), which leads to su”cient conditions under which

TWDID is guaranteed to have a smaller bias than conventional DiD.

Consider first a case in which TWDID is guaranteed to be asymptotically unbiased.

Recall that the variance-minimizing weights v
≃ solve minv↔V v

→(F”ωF
→ + ”ε)v. The id-

iosyncratic noise ϖit regularizes the time weights towards noise-minimizing weights vε =

argminv↔V v
→
”εv = ”

↗1
ε X(X →

”
↗1
ε X)↗1

c, which minimize the component of the variance
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in ω̂(v) attributable to idiosyncratic noise. Moreover, vε are the weights one would obtain

in the unfavourable case in which the variance# carries no information about the confound-

ing factors. When vε is uncorrelated with F , they coincide with the variance-minimizing

weights v
≃. Then, TWDID is asymptotically unbiased because b(v≃) = v

→
εF ϖω = 0 irre-

spective of the loading imbalance ϖω.

The condition v
→
εF = 0 imposes parallel trends with respect to the noise-minimizing

weights vε. It requires that the dynamics in the idiosyncratic errors are perfectly aligned

with the factors. For example, white noise errors (”ε = ς2
εI and vε = v2wfe) are perfectly

aligned with factors satisfying fT = 1
T0

∑
t↘T0

ft. In that case, TWDID is asymptotically

unbiased, and Theorem 1 shows it is asymptotically equivalent to the 2wfe estimator except

for additional uncertainty coming from the weight estimation.

In general, the variance-minimizing weights v≃ reduce the correlation with F compared

to noise-minimizing weights vε. In case of one factor, this immediately implies that TWDID

has a smaller asymptotic bias than ω̂(vε), i.e. |b(v≃)| < |b(vε)|. The following lemma

formalizes this result in the general case based on an analytical expression of the bias

b(v≃).

Lemma 2. Let F̃ = ”
↗1/2
ε F”

1/2
ω , X̃ = ”

↗1/2
ε X, ṽε = ”

1/2
ε vε and ϖ̃ω = ”

↗1/2
ω ϖω. Suppose

Assumptions 1-6 hold. Then b(v≃) = ṽ
→
εF̃ (I + S)↗1

ϖ̃ω, where S = F̃
→
MX̃F̃ has full rank

r and MX̃ = I → X̃(X̃ →
X̃)↗1

X̃
→
. This implies b(v≃) = 0 if v

→
εF = 0 and |b(v≃)| < |b(vε)|

if r = 1.

This lemma formally shows how the bias of TWDID depends on the bias under noise-

minimizing weights and the signal strength in the covariance matrix. This is best illustrated

in case of one factor f . The bias then simplifies to b(v≃) = b(vε)/(1+s2) with s2 = f̃
→
MX̃ f̃

the signal strength in the covariance matrix and b(vε) = v
→
εf↼ω the bias under noise-

minimizing weights vε. Assumption 6 implies that s2 > 0, so TWDID decreases the
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magnitude of the bias relative to the estimator ω̂(vε) by a factor of 1+ s2. This means that

TWDID is guaranteed to have a smaller bias than the 2wfe estimator if the errors are i.i.d.

over time; and a smaller bias than the canonical DiD estimator under random walk errors.

Aside specific cases of”ε, the bias is smaller than that of ω̂(vdid) whenever |b(vε)|/|b(vdid)| <

1 + s2. Clearly, TWDID is guaranteed to have a lower bias if DiD has a larger bias than

ω̂(vε), even if there is no signal. When |b(vε)| > |b(vdid)| > 0, the bias is smaller as long

as the signal s2 is su”ciently strong. TWDID therefore has larger bias only if the noise-

minimizing weights point in a less favorable direction than vdid and the variance carries

too little signal to push the weights towards reducing the bias.

3.3 Consistency under drifting factors

A key observation is that the bias b(v≃) vanishes when the factor strength increases. A

natural way to formalize this is to show consistency of ω̂(v̂) when the factor strength

increases with the sample size. I scale the factors in (1) by a signal-to-noise ratio parameter

ς > 0, and consider asymptotic sequences along which (N, ς2) ≃ ↘.3

The formal result of this section exploits that under Assumption 6 the factors are as

good as observed from the covariance matrix # = ς2
F”ωF

→ +”ε when ς2 is large. Using

the Woodbury (1949) identity for matrix inversion, one can expand #
↗1 = ”

↗1/2
ε Mφ”

↗1/2
ε ,

where the matrixMφ = I→ς2
F̃ (I+ς2

F̃
→
F̃ )↗1

F̃
→ converges to the orthogonal projection on

the column space of the (e”ciently weighted) factorsMF̃ = I→F̃ (F̃ →
F̃ )↗1

F̃
→. This happens

“fast enough” to eliminate the correlation with the factors, in a sense that ςMφF ≃ 0.

In fact, the variance-minimizing weights v
≃ converge to the weights implied by the

3
One can additionally impose weak loading imbalances ϖωω = O(n

↓1/2
). Then the asymptotic bias of

fixed weights estimators
⇐
Nb(v) remains bounded, while TWDID is asymptotically unbiased

⇐
Nb(v

↔
) ≃

0.
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(infeasible) factor-augmented GLS estimator ω̂(v0) = v
→
0ŷ. These are are given by

v0 = ”
↗1
ε X

→
a(X

→
a”

↗1
ε Xa)

↗1
ca = argmin

v↔V0

v
→
”εv

where Xa = [e, ϱ,F ] and ca = (1, 0, 0)→. By construction, v0 is uncorrelated with the

factors and thus eliminates the confounding factor structure without having to estimate

the loadings explicitly. As a result, TWDID is consistent as (n, ς2) ≃ ↘. This can also

be seen from the bias expression of Lemma 2

b(v≃) = ςṽ→
εF̃ (I + ς2

S)↗1
ϖ̃ω = O

(
ς/(1 + ς2)

)
,

showing that the bias diminishes for diverging factors.

Another observation is that the bias vanishes under weak factors, that is, when ς2 ≃ 0.

In that case, the factor structure disappears from the mean of ŷ and from the covari-

ance matrix # ≃ ”ε. The weights v
≃ converge to the noise-minimizing weights vε, thus

remaining well-defined. Therefore, the TWDID estimator consistently estimates ω under

weak factors. While this is the case for any other time-weighted DiD estimator, TWDID

achieves the smallest variance within this class. Corollary 1 reaches the same conclusion

for a weak loading imbalance
⇐
Nϖω ≃ 0, the di!erence being that then the factors still

appear in the covariance matrix.

These results are summarized in the following theorem, which is the counterpart of

Theorem 1 for drifting factor asymptotics.

Theorem 2 (Drifting factor asymptotics). Suppose Assumptions 1-7 hold. Then

1. (Diverging factors) If (N, ς2) ≃ ↘, then v
≃ ≃ v0, b(v≃) ≃ 0, and ω̂(v̂)

p→≃ ω .

2. (Weak factors) If N ≃ ↘ and ς2 ≃ 0, then v
≃ ≃ vε and ω̂(v̂)

p→≃ ω . Moreover,

⇐
N(ω̂(v̂)→ ω)

d→≃ N (0,v→
ε”εvε + ς2

ϱ ) if the rates satisfy Nς2 ≃ 0.

Similar consistency results for diverging factors have been established for synthetic

control estimators in large T panels, for example in Ferman and Pinto (2021). In these
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setups, asymptotically unbiased estimates also requires that the signal dominates the noise

in the limit. This is typically achieved by assuming non-stationary factors while restricting

the time series dependence of the idiosyncratic errors.

4 Monte Carlo Experiments

4.1 Setup

In each replication, I draw data from

yit = ςωω
→
ift + ϖit, ϖit = ↽ϖi,t↗1 +

√
1→ ↽2⇀it (6)

with ⇁ij = ↼ωDi + νij and {νij, ⇀it}i,j,t i.i.d. draws from the standard normal distribution.

This incorporates two important parameters that I vary across di!erent simulations. First,

I vary the autocorrelation parameter ↽ ↑ {0, 0.5} to study the e!ect of persistency in the

error term (while keeping var[ϖit] = 1). Second, I vary the factor strength ςω, including

settings without factors (ςω = 0), weak factors (ςω = O(1/
⇐
N)), and strong factors

(ςω = O(1)). The loading imbalance is fixed at ϖω = 0.1. That way, the factors strength

and the bias are of the same order, proportional to ςω.

I consider up to two factors ft = (f1t, f2t)→, both of which are being fixed across all

simulation settings. The first factor comes from one draw of a persistent AR(1) process.

The second factor is a deterministic, linear trend. Both factors are rescaled to have unit

variance (
∑

t f
2
jt = 1) and are plotted in Figure 1. In settings with only one factor, I set

⇁i,2 = 0.

I compare four estimation strategies. The first is the TWDID estimator, which imposes

only the constraint that the time weights sum to one, allowing them to take negative

values. The second is a restricted version of TWDID (denoted TWDID+), which in addition

requires the time weights to be non-negative. For comparison with conventional approaches,
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Figure 1: Factors used in the Monte Carlo simulations. The first factor is a realization of a gaussian AR(1)

process with autocorrelation 0.8. The second factor is a linear trend.

I also consider the two-way fixed e!ects (2wfe) estimator, which assigns equal weight to

all pre-treatment periods. Finally, I include the synthetic di!erence-in-di!erences (SDID)

estimator, which combines non-negative time weights that sum to one with unit weights

estimated from the pre-treatment periods as defined in (5).

4.2 Results

Figure 2 shows desirable properties of the time-weighting approach compared to not weight-

ing or unit weighting. As expected, TWDID performs better than 2wfe in all settings, both

in terms of bias and RMSE. Consider first the case of one factor (top rows). Here the post-

treatment factor is smaller than the average pre-treatment factors (Figure 1). Because the

factor a!ects treated units more than untreated units (ϖω > 0), 2wfe has a negative bias.

The magnitude of the bias is proportional to the factor strength. TWDID successfully

reduces the bias and RMSE independently of the factor strength. Even in absence of fac-

tors (ςω = 0), TWDID improves upon the unbiased DiD when there is persistency in the

errors due to its e”ciency properties. SDID generally requires a stronger signal before it
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Figure 2: Simulated RMSE (top panel) and bias (bottom panel) of four estimators: two-way fixed e!ects

(2wfe), restricted time-weighted DID (TWDID+), TWDID, and synthetic DID (SDID). The horizontal

axis depicts di!erent levels of the factor strength ωω. The data is generated by (6) with fixed factors.
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improves upon 2wfe. Moreover, it can exacerbate bias and RMSE compared to TWDID

and 2wfe when factors are weak, as the results in the single factor case suggest. With two

factors, however, the comparison is more mixed. While TWDID and SDID exhibit compa-

rable RMSEs, SDID has a lower bias. This suggests that unit weights can be successful in

reducing bias further even in short T .

Overall, the simulations indicate that TWDID can reduce bias and RMSE relative

to 2wfe across di!erent levels of factor strength and error persistence. These findings

highlight the advantages of TWDID in short panels. However, they should be interpreted

as illustrative for the considered factor dynamics rather than taken as universal across

all possible factor structures. Appendix C contains additional Monte Carlo Experiments

showing desirable coverage rates, and has settings in which the factors are redrawn from a

gaussian process.

5 TWDID in practice: the e!ect of the NOx Budget

Trading Program

I revisit Deschenes et al. (2017) studying the e!ect of the NOx Budget Trading Program

(NBP) 2003-2008 on NOx emissions. It entailed a cap and trade program to reduce NOx

emissions from power plants. It was only active in the summer months May - September in

the years 2003-2008 in 19 states in the US. In 2003 the program was active only in a subset

of the 19 treated states. States not adjacent to the NBP states remain as non-treated states

(22 in total).

Data on NOx emissions is available on county level for N = 2539 counties from 1997-

2007. We observe N1 = 1, 354 counties in the treated states and N0 = 1, 185 in the

untreated states. Per county and year we observe data for the seasons summer and winter,

where summer is defined as May - September.
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Specification. Consider the interactive fixed e!ect model

ỹist =
2008∑

j=2004

ω attj Dist(j) + µit + νis + ω
→
if̃st + ϖ̃ist

with Dist(j) = I(i ↑ N1, t = j, s = 1) a post-treatment dummy of year j indicating whether

NBP is operating in county i in season s = 0, 1 (winter, summer). µit, νis are county-year

and county-season fixed e!ects, respectively. f̃st are season-year specific common shocks

that a!ect the emissions of county i with intensity ωi. ϖ̃ist is an idiosyncratic error term.

The special case ωi = ω resembles the additive fixed e!ect model that Deschenes et al.

(2017) use. In that case the factor structure reduces to a season-year fixed e!ect.

As a preliminary step I eliminate county-year fixed e!ects µit by considering the di!er-

ence between summer and winter observations

yit := ỹi1t → ỹi0t =
2008∑

j=2004

ω attj Dit(j) + εi + ω
→
ift + ϖit

with εi = νi1 → νi0, ft = f̃1t → f̃0t and ϖit = ϖ̃i1t → ϖ̃i0t. The application matches the setting

of this paper under the assumption that the program does not a!ect emissions in the winter

months in the treated years.

Evidence against parallel trends. I first obtain evidence against ϖω = 0 by considering

how the di!erence in average NOx emissions ŷt = ȳ(1)t → ȳ(0)t has evolved prior to the

intervention. We can write

ŷt = ε̄(1) → ε̄(0) + ϖ
→
ωft +Op(

1⇐
N
), t ↗ T0

so ŷt should be constant prior to the treatment when parallel trends holds in all periods

(ϖω = 0). However, Figure 3 does show variation of ŷt in periods t ↗ T0. Also a formal test

based on Jpre = N ẏ
→
pre#̂

↗1
preẏpre with #̂pre/N = v̂ar[ẏpre] and ẏpre = (ŷ1→ŷT0 , . . . , ŷT0↗1→ŷT0)

→

rejects the null of parallel trends in all pre-treatment periods at conventional levels.
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Figure 3: Di!erence in average NOx emissions ȳ
(1)
t → ȳ

(0)
t over time, with 95% confidence band (dashed),

Jpre the statistic testing parallel trends in all pre-treatment periods, distributed as ε
2
5 under the null.

Results. I estimate the dynamic e!ects of the intervention, applying the TWDID ap-

proach sequentially for each post-treatment period j = 2004, . . . , 2008. For comparison I

also computed the canonical DID estimator (all weight on the most recent pre-treatment

period 2002) and the 2wfe estimator, which uses equal time weights. I omit the year 2003

from the analysis because not all treated states had fully implemented the program by

then. For a given post-treatment period T1 ↑ {T0 + 1, . . . , T}, I implement all estimators

using the regression interpretation presented in (4). The corresponding regression equation

is

yi,T1 → yi,T0 = ϑ + ωDi + ẏ
→
i,preς + ui

with ẏi,pre = (yi,1 → yi,T0 , . . . , yi,T0↗1 → yi,T0)
→ denoting the unit-specific pre-trends. In this

specification, the least-squares estimate of ω is a time-weighted DiD estimate ω̂(v) = v
→
ŷ

where the weights v = (→ς, ϱ→ς→1, 1)→ are determined by the coe”cients on the pre-trends

ς = (ν1, . . . , νT0↗1)→. The DiD estimator corresponds to the least-square estimate of ω

when restricting ς = 0, i.e. omitting the pre-trends ẏi,pre from the regression. Similarly,

the 2wfe estimator results from restricting νt = 1/T0 for all t. The TWDID estimator ω̂(v̂)

corresponds to the unrestricted regression, i.e. when ẏi,pre is controlled for, and observations
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Figure 4: Left: Estimated time weights for each post-treatment period as of (7). Right: Resulting estimates

of ϑ
att

and confidence intervals for both TWDID, 2wfe and DiD estimation. J
↔↔↔
did and J

↔↔↔
2wfe indicate that

the Wald tests for v
↔
= vdid and v

↔
= v2wfe reject at the 1% level, respectively.

are weighted by their inverse propensity score.

The left panel of Figure 4 shows the estimated pre-treatment weights v̂pre used by the

TWDID estimator for a given post treatment period, while the right panel of Figure 4

shows the resulting dynamic treatment e!ect estimates and their 95% confidence intervals.

Across all post-treatment periods, the weights are significantly di!erent from both vdid and

v2wfe as judged by the Wald statistics testing the corresponding restrictions on ν. Because

ŷt significantly varies in the pre-treatment periods, the ATT estimate is sensitive to the

choice of weights. While DiD and 2wfe estimation suggest e!ects of similar magnitude,

TWDID estimation suggests, in absolute terms, smaller e!ect sizes. Since the weights

are chosen to minimize the variance of the estimator, TWDID estimates are clearly more

precise DID and 2wfe and the resulting confidence intervals are narrower.

These results can be explained by confounding aggregate shocks which a!ect NOx

emissions di!erently across counties. Estimators using fixed weights, such as DID and

2wfe, are therefore sensitive to variations in the shocks before and after the start of the
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program. In contrast, TWDID reduces the influence of the confounding factors on the ATT

estimate under the assumption that the persistency in emissions over time is informative

about those shocks. In this case, the negative pre-treatment weights suggest the presence

of aggregate shocks that cannot fully be accounted for by non-negative weights used by

2wfe and DiD. Accounting for those shocks, TWDID extrapolates part of the pre-treatment

decrease the di!erence of emissions to the post-treatment periods. The method therefore

attributes smaller share of the observed decrease in emissions to the program itself, leading

to lower point estimates.

6 Conclusion

This paper introduces a time-weighted di!erence-in-di!erences (TWDID) estimator for

settings with few pre-treatment periods. Unlike conventional estimators, which use fixed

pre-treatment weights, TWDID assigns variance-minimizing weights determined by the

within-group covariance matrix of outcomes. The proposed estimator is e”cient in the

considered class when parallel trends hold across all periods. I introduce violations of

parallel trends through common factors that have heterogeneous e!ects on the outcome. I

show that the weights reduce the influence of the confounding factors, yielding a smaller

bias than conventional DiD estimators under mild assumptions on the factors. Revisiting

the impact of a cap-and-trade program on NOx emissions, TWDID yields smaller and more

precise estimates than conventional approaches.

SUPPLEMENTARY MATERIAL

Online Appendix Additional results, Proof of Theorems and Lemmas
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