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Abstract

This paper introduces a time-weighted difference-in-differences (TWDID) esti-
mator for settings with few pre-treatment periods. Unlike conventional estimators,
which use fixed pre-treatment weights, TWDID assigns variance-minimizing weights
determined by the within-group covariance matrix of outcomes. The proposed esti-
mator is efficient in the considered class when parallel trends hold across all periods.
I introduce violations of parallel trends through common factors that have hetero-
geneous effects on the outcome. I show that the weights reduce the influence of the
confounding factors, yielding a smaller bias than conventional DiD estimators under
mild assumptions on the factors. Revisiting the impact of a cap-and-trade program on
NOx emissions, TWDID yields smaller and more precise estimates than conventional
approaches.
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1 Introduction

The presence of interactive fixed effects in the untreated potential outcomes leads to biased
difference-in-difference (DID) estimates of average treatment effects. While the estimators
of Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021) and Chan and Kwok (2021)
address this issue in large T' panels, the question remains how to account for common
factors in short T panels.

In this paper, I introduce a time-weighted DID (TWDID) approach to estimate the av-
erage treatment effect on the treated (ATT) of a binary treatment. While the conventional
DiD estimator considers only the most recent pre-treatment period, TWDID uses a linear
combination of pre-treatment periods that minimizes the variance of the resulting estima-
tor. The corresponding pre-treatment weights are estimated from the sample covariance
of outcomes. TWDID remains unbiased under the assumption that parallel trends holds
across all periods, since then the ATT is identified for any set of pre-treatment weights
that sum to one. The proposed estimator therefore provides substantial efficiency gains in
those cases.

Next, I consider violations of parallel trends in an interactive fixed effects model. In this
setup, unobserved time-varying common factors have a time-invariant but heterogeneous
effect on the outcome. If those correlate with the treatment assignment, parallel trends
no longer holds across all periods, but only with respect to unknown weighted averages
of pre-treatment periods. This leads to a bias in the conventional DiD estimator that
is proportional to the differences between the pre-treatment and post-treatment factors.
Addressing the bias therefore requires pre-treatment weights that balance the confounding
factors.

The main take-away of the paper is that TWDID, besides being efficient under par-

allel trends, typically reduces bias compared to conventional DiD. This works because



the confounding factors that generate the bias also affect the variance of the outcomes.
Variance-minimizing weights therefore adjust to the dynamics of the factors without need-
ing to estimate the factors directly. However, since the variance is also affected by noise,
the bias is generally not eliminated completely. This is inherent to the setting, since latent
factors can generally not be consistently recovered without stronger conditions when only
a few pre-treatment periods are available.

Formally, I show that the variance-minimizing weights shrink towards noise-minimizing
weights, leading to an attenuation bias that depends on the alignment between noise dy-
namics and factor dynamics. TWDID is asymptotically unbiased in the most favorable case
in which noise dynamics and factors are perfectly aligned. I present sufficient conditions on
the noise-minimizing weights under which the reduction in bias relative to conventional DiD
is guaranteed. Moreover, the bias vanishes asymptotically if the factor strength increases
with the sample size.

The theoretical results have implications about the empirical practice of controlling for
‘pre-trends’, which are discussed also in Steffens and Stuhle (2025). The TWDID estimator
and the associated time weights can be jointly estimated in a linear regression of differences
in outcomes on the treatment augmented with individual pre-trends. This provides useful
insights for practitioners. If parallel trends holds across all periods, the pre-treatment
differences in outcomes are uncorrelated with the treatment assignment. Therefore, the
coefficient on the treatment still identifies the ATT when augmenting the regression. At
the same time, it increases precision if the pre-trends are predictive of the changes in the
outcome that are explained by the treatment. When parallel trends is violated, the pre-
trends act as noisy proxies of the confounding factors. The remaining bias in TWDID is
therefore similar to bias from measurement error, resulting in attenuation towards noise-
minimizing time weights.

I show that the TWDID estimator and the estimated time weights are jointly asymptot-



ically normal under large N asymptotics. Standard errors of the estimated treatment effect
need to account for the presence of estimated weights. This is achieved by conventional
cluster-robust variance estimators applied to the joint estimating equations. Moreover, this
result allows researchers to test restrictions on the variance-minimizing time weights, which
serves as useful diagnostic check.

I revisit the study by Deschenes, Greenstone, and Shapiro (2017), who employ a triple-
DiD design to estimate the effect of a cap-and-trade program on NOx emissions. In this
setting, interactive fixed effects may arise if common shocks, such as the business cycle or
weather, affect counties in a heterogeneous way. Applying TWDID leads to smaller esti-
mated treatment effects than conventional DiD or two-way fixed effects estimators suggest,
while at the same time producing narrower confidence intervals. The results suggest that
part of the decline in emissions captured by conventional DiD is attributable to confound-
ing aggregate shocks, illustrating that time-weighting can reduce this bias while improving

precision.

Related literature. The TWDID estimator is closely related to the synthetic DID
(SDID) estimator of Arkhangelsky et al. (2021). Both approaches use time weighting
to balance the unobserved factors, but the weighting scheme differs in several ways. First,
SDID estimates the time weights using only the untreated units, while TWDID estimates
them from the full sample and thereby exploits information from the treated units’ dy-
namics. Second, SDID imposes a non-negativity constraint on the time weights, providing
regularization in long panels. TWDID does not impose such constraints, thus allowing
for negative time weights. Finally, SDID also estimates control unit weights, which fur-
ther reduces bias, but requires a large number of pre-treatment periods for consistency.
When T is small, SDID may exacerbate bias compared to DiD, as suggested by Monte

Carlo experiments in this paper, whereas TWDID consistently improves upon DiD in such



settings.

Other approaches to identify and estimate treatment effects in short T panels with inter-
active fixed effects, reviewed recently in Brown and Butts (2022), usually involve additional
moment conditions. Under those, one can account for latent factors for example through
forward-orthogonal differencing as in Ahn, Lee, and Schmidt (2013) or using time-invariant
observable covariates with constant effect on the outcome as instruments (Callaway and
Karami, 2022). Instead, TWDID exploits heterogeneity of the factor loadings.

This paper relates to other discussions around efficiency of DiD approaches when par-
allel trends holds across multiple periods, for example Marcus and Sant’Anna (2021) ;Roth
and Sant’Anna (2023), Borusyak, Jaravel, and Spiess (2024), Harmon (2024), and Chen,
Sant’Anna, and Xie (2025). Allowing violations of parallel trends, approaches by Manski
and Pepper (2018) and Rambachan and Roth (2023) partially identify the ATT by restrict-
ing the way those violations evolve over time. Relative to their findings, this paper shows
how the ATT can be recovered with “misspecified” efficient DiD estimators by relating the
parallel trend violations to the variance in the outcomes.

This paper also relates to findings in the literature on synthetic control (SC) esti-
mators (Abadie, Diamond, and Hainmueller, 2010; Xu, 2017; Abadie and L’hour, 2020;
Ferman, 2021; Ferman and Pinto, 2021; Ben-Michael, Feller, and Rothstein, 2021). They
use unit weights to balance time-invariant unobserved characteristics between treated and
untreated units, which are estimated with a time-series regression over the pre-treatment
periods. Consistent estimation requires a large number of pre-treatment periods, strict bal-
ancing conditions on the loadings and restrictions on the serial dependence of the errors.
Similarly, TWDID requires a large number of control units and balancing conditions on
the factors. Exploiting independence over the cross-section, however, TWDID estimation
remains reliable when the data exhibits strong serial dependence.

When both N and T are large, one can use results from linear panel data models with



factor structures (Pesaran, 2006; Bai, 2009) to recover a long run average treatment effect.
For example, Gobillon and Magnac (2016) apply the estimator of Bai (2009) to estimate
the average treatment effect jointly with the factor structure. Using principal component
analysis, Chan and Kwok (2021) construct factor proxies, which can then be used in a
factor-augmented regression. In short 7' panels, however, these estimators are generally
inconsistent.

The remainder of the paper is structured as follows. Section 2 introduces the interactive
fixed effects model and the TWDID approach. Formal theoretical results are devoted to
Section 3 Section 4 illustrates the theoretical results and finite sample properties with

simulations. Section 5 contains the application and Section 6 concludes.

2 A time-weighted difference-in-differences approach

2.1 Setup

Using a panel data set for treated and untreated units, we wish to estimate the effect of
a policy intervention starting in period ¢ = Ty. That is, we seek to estimate the average

treatment effect on the treated

in the post-treatment periods t = Ty + 1,..., T, where y;(1),y;(0) are the potential out-
comes of unit ¢ in period ¢, and D; € {0,1} indicating whether unit i is ever treated. The
researcher observes y;; = D;y;:(1) + (1 — D;)y(0) for a large number of units : = 1,..., N
and a small number of periods ¢t = 1,...,T, covering at least two pre-treatment periods
(To > 2).

The untreated potential outcomes are generated by an interactive fixed effects model,

vie(0) = Bi+ v + ANifi +eu (1)
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where 3; are unit fixed effects, v, are time fixed effects, f; and A; are r-dimensional vectors
of common factors and loadings, and ¢; is an idiosyncratic error component. Such unob-
served factor structures, A, f;, are present in many economic settings. In microeconomic
applications, A; can be thought of a vector of unobserved, time-invariant characteristics of
individual 7. In contrast to the fixed effects f;, they have a time-varying impact on the
outcome y;; measured by f;. In macroeconomic applications, the factors f; are unobserved
common shocks (e.g. technology or weather shocks) that, in contrast to the time fixed ef-
fects ¢, have an heterogeneous impact A; on unit ¢. This DGP nests important cases such
as deterministic, linear trends when f; = t. It also nests the two-way fixed model, when all
factors are constant over time (f; = f), in which case the factor structure is absorbed by
the unit fixed effects.

To simplify notation, let N; = {i: D; = j}, j = 0,1 denote the sets of untreated and
treated units in the sample, respectively. Let Ny = Zfil(l — D;) and ng = % denote the
number and share of untreated units, respectively. The factors are stacked into the T' x r
matrix F' = [f1,..., fr|’, and similarly €; = (g;1,...,¢i7), ¥i(d) = (vi1(d),...,yir(d))
and y; = (yi,b cee ayi,T)/-

Consider the following assumptions.
AssumMPTION 1 (No anticipation). y;(1) = v:£(0) for all t <Tp and all i =1,..., N.

AssuMPTION 2 (Potentially confounding loadings). The A; are random vectors satisfy-
ing E(\|D; = d] = p\? with [p\”] < oo for d = 0,1 and Var[\|D;] = X, with

lim,, 00 NLd ZieNd 3= E&d) for d =0, 1.

AssumPTION 3 (Parallel trends conditional on time-invariant unobservables). For every i,
Elei|8:, Di, Ai, F] = 0. Moreover, E[e;e}|D;] = X, ; with lim,,_, Nid ZieNd e, = > for

d=0,1; and =, = ng ' + (1 — ng) 1= is a positive definite T x T matrix.



AssuMPTION 4 (Random sampling). (y;(1),:(0),&;, A;) are independent over the cross

section; ng € (0, 1) is constant as N — oo, and Ty > 2.

AsSUMPTION 5 (Treatment effect heterogeneity). The vector of individual treatment effects
T = (Timy+1, - Tir)'s T = Yir(1) — yi(0), satisfies % > Di(ri — 7)(€], )\;)’ 5 0 where

Xi =\ — E[\| D).

AssuMPTION 6 (Confounders do not perfectly correlate with treatment). Let &, = uf\l) —

OISR TR ()
1. The loadings satisfy lim¢_, &€\ (2 + (I)" '€, < w, for some finite constant w,.

2. The factors satisfy rank F' = r with 0 < r < Tj. Moreover, d' Mp,d > wy for
some constant wy; > 0 and for all linear combination of post-treatment dummies

d € span {e;}i>1,, where F, = [¢, F|, e; the t-th unit basis vector in R” and ¢ =

(1,...,1).

Assumption 1 ensures that we observe the untreated potential outcome of the treated
units prior to the treatment. It would be violated in presence of anticipation effects, i.e.
when the treatment affects the outcome before it actually starts. If sufficient pre-treatment
observations are available, one can estimate the anticipation effects as it is commonly done
in event-study designs.

Assumption 2 is a central characteristic of the model. It allows the loadings A; to differ
systematically between treated and untreated units. The loading imbalance &, = uf\l) —uf\o)
measures how much more (or less) the treated units are on average affected by the common
factors f;. It nests the two-way fixed effects model for constant loadings A; = A. In
that case, the factor structure A,f; would be entirely absorbed by the time fixed effect
¥ = v + XN fi. Moreover, it allows weak factors, as it prevents neither u,f\j) nor Xy, from

diminishing in large samples.



Under Assumption 3, the treatment assignment is strictly exogenous once conditioned
on the loadings, fixed effects and the factors. This implies parallel trends in the un-
treated potential outcome y;;(0) conditional on the unobserved loadings, while allowing for
heteroskedasticity and arbitrary serial dependence of the idiosyncratic errors. Lastly, As-
sumption 4 is a conventional restriction that ensures independence of potential outcomes,
loadings, and idiosyncratic errors over the cross section. It also requires the number of
treated and untreated units to grow at the same rate.

Assumption 5 imposes that within the treated units, the treatment effects are (asymp-
totically) uncorrelated with the idiosyncratic errors and the loadings, which is trivially
satisfied when treatment effects are constant. When treatment effects are heterogeneous, it
allows together with Assumption 3 to decompose the within-group covariances of outcome
into three separate parts resulting from the factor structure, the idiosyncratic errors, and
the treatment effect heterogeneity, respectively. While this is not strictly necessary for the
main findings, it eases exposition and interpretation.

Assumption 6 imposes mild conditions on the unobserved confounders. While the basic
distributional results of this paper are derived without this assumption, it is essential to
guarantee bias reduction properties of the estimator. The first statement rules out multi-
collinearity between the loadings A; and the treatment assignment D;, which is similar to
requiring overlap in the propensity score under unconfoundedness, see for instance Imbens
and Wooldridge (2009). If the loadings are correlated with D;, it requires a non-singular
covariance matrix 3. However, it does not rule out constant loadings A; = A. Similarly,
the second statement requires sufficient variation in the pre-treatment factors, unless the
factors are constant over time. It therefore excludes factors that are constant pre-treatment
but vary after onset of the treatment. In that case it would be impossible to distinguish
the effect from the factors from those of the treatment, even if the factors were observed.

The common factors F' can be viewed as realizations from some deterministic or stochas-



tic process, where the number of factors r is unknown and fixed. All results should be
interpreted conditional on F'.

The following sections focus on the case of one treated period t = T', and denotes the
relevant ATT by 7 = 7p. The cases of multiple treated periods and staggered adoption are

discussed in Appendix A.2.

2.2 Identification and estimation with fixed time weights

This paper considers estimators based on sample mean differences 4, = ¥1; — o+ in each
period, where ¥;,; = N%i > p,—aYit, d = 0,1 are the sample means of observed outcomes
within untreated and treated units in period ¢. Denoting g = (91, . .., §r), the factor model
(1) implies that

g=-er+1€5+ F& + 1, Na ~ N(0,9) (2)

where the post-treatment dummy e = (0, ...,0, 1)’ is the regressor of interest, ¢ = (1,...,1)
is a constant vector of ones, and €2 the limiting covariance matrix of §. Therefore, iden-
tifying 7 can be formulated as time-series regression problem where the factors F act as
unobserved confounders.
This paper focuses on time-weighted DiD estimators
7(v) = g7 — Z Vpret = V'Y, v €V ={v R’ :[e,tJv=(1,0)}
t<Tp

These estimators compare differences in the treated period to a weighted average of pre-
treatment differences, where vpre = (Upre1, - - -, Upre,1, )’ denotes the associated pre-treatment
weights. It is more convenient to carry out the theoretical analysis in terms of the full
vector of time weights v = (—v,,1). The set V restricts the weights to sum to zero

and sets the post-treatment weight equal to one. Therefore, the pre-treatment weights

Vpre = (—01, ..., —vg) must sum to one.
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Many prominent DiD estimators correspond to a particular choice of v. One exam-
ple is the two-way fixed effects (2wfe) estimator, which weights all pre-treatment peri-
ods equally. It corresponds to vowfe = (—1/Tp, ..., —1/Tp, 1), An equivalent expression is
Vowte = X (X'X)le with X = [e,¢] and ¢ = (1,0)’, which are the weights implied by
the ordinary least-squares estimator in (2). Another example is the canonical DiD esti-
mator, which uses the most recent pre-treatment period as ‘base-period’. It corresponds
to vgiq = (0,...,0,—1,1)" or equivalently vgq = A’AX(X'A’AX) !, where A is the
T x T matrix taking first differences, i.e. Ax = (21,29 —x1,..., 27 —x7_1) for any vector
x € RT.

A time-weighted DiD estimator 7(wv) is unbiased for 7 under a weighted parallel trends
assumption

E[yz',T(O) - Z Upre,tyit<0)|Di = 1] = E[yz',T(O) - Z Upre,tyit(0>|Di = 0}

t<Ty t<Tp

which restricts the expected change in y;;(0) with respect to a particular weighted average of
pre-treatment periods given by v. More compactly, the condition reads as v'(pu™ — pu©) =
0, where the vector u¥ = E[y;(0)|D; = d] contains the mean untreated potential outcome
in treatment group d = 0, 1 stacked over all periods.

The main challenge is that parallel trends may only hold for v in an unknown subset
Vo C V. In the interactive fixed effects model (1), this set is Vo = {v € V: v'F§, = 0},
since puM — pu(® = 1€+ FE, and v’ = 0. In the special case of balanced loadings (£, = 0),
parallel trends hold with respect to all (combinations of) pre-treatment periods, and any
choice of weights v € V = V| results in an unbiased estimator. However, in the general
case, Vo depends on the unobserved factors F'. Without further restrictions on F', standard
choices of v lead to biased estimates of the ATT.

This paper proposes to use weights v* that minimize the variance of 7(v). In the setup

of this paper, var[7(v)] = v'Qu/N, and = var[y] - N can be consistently estimated
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by conventional variance estimators of mean differences. The smallest variance among all

time-weighted DiD estimators is obtained for

v =argminv'Quv = Q' X(X'Q ' X) e

vev

which I refer to as variance-minimizing weights. The Gauss-Markov Theorem tells us that
7(v*) corresponds to the GLS estimator in (2) that ignores the latent factors F.!' Since
7(v*) is unbiased if €, = 0, it is efficient among time-weighted DiD estimators when
parallel trends holds for all v € V. For example, for i.i.d. homoskedastic errors u, the
covariance matrix {2 = aiI is diagonal, 7(v*) corresponds to the 2wfe estimator with equal
pre-treatment weights. For random walk errors, = LL’ with L a lower-diagonal matrix
taking cumulative sums, so Q7' = A’A. Then 7(v*) corresponds to the canonical DiD
estimator, known to be efficient under these error dynamics (Harmon, 2024).

In the setup of this paper, variance-minimizing weights also have favorable bias proper-
ties when A £ 0. With heterogeneous loadings A;, the covariance matrix 2 = FX, F' + 3.
is informative about the confounding factors. Minimizing the variance v'Qw therefore re-
duces the bias b(v) = v/ F§) compared to vgiq in many cases. The remainder of this paper

presents formal conditions under which such bias reduction properties can be guaranteed.

2.3 Joint estimation of time weights and the treatment effect

This section introduces the estimators 7(v) and © targeting v* and 7 from a practical point
of view. Formal distributional results are presented in Section 3.

The starting point is the variance estimator of mean differences g, given by

~ ~ ~ ~ 1
Q=(1—n0)"'Q+ng'Q, Q= (yi—¥a)wi—9a), d=0,1

where €4, d = 0,1 are the sample covariance matrices of observed outcomes within un-

treated and treated units. The estimated weights result from plugging in Q into the general

T thank Dmitry Arkhangelsky and an anonymous referee for pointing me in this direction.
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expression for v*,

~

® = argminv'Qv = Q' X(X'Q'X) ¢ (3)

veVv

which are well-defined in short panels as long as N; > T'. The resulting time-weighted DiD
(TWDID) estimator 7(9) = ¥’y can be interpreted as the feasible GLS estimator in (2)
and is the main object of interest in this paper.?

A useful insight is that 7(v) and © can be jointly estimated from a linear regression.

Substituting the conditions, the time weights can be expressed as
v=wvgq— Qv = (V' v —-11)

where v € RT72 are the weights of the first T — 2 periods and Q = [I7_5,—¢,0] is a
T x T — 2 matrix whose transpose takes long differences with respect to period t = Tj.
This is without loss of generality, since the columns of @ form a basis of {X'v = 0}.
Let Yipre = QYi = (Vi1 — Yitys-- - Yizy—1 — Yi,) be the vector of T — 2 unit-specific

'pre-trends’. Then 7(v) and © = vg;q — QU solve the cross-sectional regression problem

min Mn(Ta v, 7)7 Mn(T7 v, 'Y) = Zp;l<yi,post - - TDi - y;7prey)2' (4>

VY
Here the difference in outcomes §; post = YiVdia = Vi — Vi1, 1S regressed on the treatment,
controlling for all T'— 2 pre-trends, and weighting observations by their inverse propensity
score p; = D;(1 —ng)? + (1 — D;)n?. The canonical DiD estimator 7(vgiq) can be obtained
from (4) when omitting the pre-trends from the regression by restricting v = 0; similarly
the 2wfe estimator 7(vays) follows from restricting v = ¢/Ty. The regression formulation
also shows that 7(v) and © are invariant to the unit fixed effects f;, since the outcomes
only enter in differences. They are also invariant to time fixed effects ~;, which are fully

absorbed by the constant v in the regression.

2Previous versions of this paper considered estimating the time weights only from the untreated units
arg mingcy v’ ﬁov. The results continue to hold in this case when restricting heteroskedasticity, i.e. E&O) =

2" and =% = 2"
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The coefficients of the pre-trends exactly recover the estimated weights v defined in (3).
This can be verified by tracing out v and 7 from (4). Writing 9; post — ¥i pre?? = Y;0, it
follows that the regression problem for a given vector of weights is solved by 7(v) = v'y

and 7(v) = v'yy. The estimated weights therefore solve min,cy M, (v,5(v),7(v)) with

objective function

Ma(v,3(0), 7(0)) = 3 i (g = 9n,)'v)" = N/

which coincides with the definition of v.
The regression representation highlights the gains from using data-driven time weights
in terms of efficiency and bias reduction from another angle. If parallel trends holds with re-
spect to all pre-treatment periods, the pre-trends ¥; ;.. are uncorrelated with the treatment

assignment D;. Therefore, restricting v = 0 does not change the estimand, since 7(v*) = 7

Still, controlling for pre-trends increases precision if the (population) variance-minimizing
if the population regression coefficient of

weights v* = wvgiq — QU* differ from wvgyq, i€
the pre-trends v* is different from zero. If parallel trends does not hold in all periods,

controlling for ¥; ;e changes the estimand 7(v*) = 74 b(v*). A bias term remains, because

Yi pre are noisy proxies of the confounding changes in factors Q'F'\,.
Another advantage of the one-step formulation is that standard errors for 7(v) and v

can be easily constructed from usual cluster-robust variance estimators of the form )y

H-'SH-!, where X is the limiting variance of § = (7(0),v',4). This allows researches
*. A useful diagnostic test is

to conduct inference on the variance-minimizing weights v

whether conventional DiD is efficient under parallel trends, corresponding to the restriction

v = Vgiq.
Section 3.1 defines those formally and shows their asymptotically validity under rela-

tively mild conditions. Extensions to multiple treated periods, staggered adoption, and

including deterministic trends are discussed in Appendix A.1.
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2.4 Relation to synthetic DiD and other approaches

While this paper focuses on the class of time-weighted DiD estimators in short panels,
many other approaches to estimate the ATT have been studied in presence of interactive
fixed effects.

A closely related approach proposed for large N large T panels is the synthetic DID
estimator of Arkhangelsky et al. (2021), which weights both the pre-treatment periods and
the untreated units. Specifically, the SDID estimator 7sqiq = 7(Usqid, @) is constructed from
7(v,w) = V' (41 — Yo(w)), where yo(w) = >, _wiy; the weighted average of control unit
outcomes, typically referred to as synthetic control. The weights Wgid; Dsdida = (—Dpye; 1)’
are obtained from the penalized regressions

R tho(th — B —wyos — (Ww)?, i ;O(yw =7 = Vpelipre)’  (5)

where ¢ > 0 is a penalty term in the unit weight estimation and A, = {x € RF : z't =

1, x; > 0} restricts the weights to be non-negative and sum to one. The TWDID estima-
tor 7(v), besides having equal control unit weights, uses more flexible time weights that
differ from vgqiq in two aspects. First, v is estimated from the whole sample, while vy4;q is
estimated only from the untreated units. TWDID therefore takes into account additional
information from the dynamics in outcomes of the treated units. As a consequence, it re-
mains variance-minimizing under heteroskedasticity, in particular when €2; # €2,. Second,
SDID imposes a non-negativity constraint on the time weights, which provides necessary
regularization when Tj is large. TWDID lifts this constraint as it is not required when Tj
is small.

Next, the synthetic control (SC) estimator (Abadie, Diamond, and Hainmueller, 2015;
Abadie et al., 2010) in its original form is 7, = 7(0,w), while Ferman and Pinto (2021)
consider a demeaned version 7gs. = 7(¢/Tp, w) which corrects for pre-treatment differences.

TWDID, using time weights estimated from a large cross-section, can be thought of as

15



a “transposed” variant of the demeaned synthetic control estimator that use control unit
weights estimated from a large number of pre-treatment periods.

I conclude this section with a motivation for allowing negative time weights in short
T settings. Generally, researchers may find extrapolation over time more acceptable than
extrapolation over the cross-section. For example, negative pre-treatment weights are re-
quired to account for unit-specific linear trend, which is common in empirical practice.
When T is fixed, the unrestricted time weights consistently estimate the corresponding
minimizers of the population covariance, as formally shown in the next section. There-
fore, observing negative time weights carries useful information: it suggests the presence

of aggregate shocks (such as linear trends) which require extrapolation.

3 Theoretical results for short panels

This section formalizes the theoretical properties of 7(v), focusing on the case of one
treated period. The cases of multiple treated periods and staggered adoption are discussed

in Appendix A.2. All proofs are in the appendix.

3.1 Baseline results under minimal assumptions on the factors

[ first establish asymptotic normality of 7(v) around 7 + b(v*) without restricting the
factors. A corollary of this result is asymptotic efficiency of 7(v) in the class of time-
weighted DiD estimators when parallel trends holds for all periods, in which case b(v*) = 0.

I begin by formalizing the properties of time-weighted DiD estimators with fixed weights.

LEMMA 1. Let F, = [F,d], Aoy = (X, B)), p8) = E[A,|Di = d] and €y, = pll) — p).
Suppose Assumptions 1-5 and 7 hold. Then
1. VN(g — p) LN N(0,92,) as N — oo with p := E[g|F] = er + F,€\ . and limiting
variance Q, = F, 3, F. + X, + c2ee’. Moreover, Q-2 Q,.
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2. For any matriz X with rank X = r < T and any positive definite matriz A
with tank A = T it holds that min,. ,x—.v'Av = (X'A7'X) ¢ at vy, =

AIX(X'A7IX)te for any c € R".

The first point ensures asymptotic normality of the mean differences y with a limiting
variance that can be consistently estimated. This is a natural starting point when modeling
potential violations of parallel trends, see for example Rambachan and Roth (2023), and
motivates the limiting regression problem in (2). An immediate consequence is asymptotic

normality of 7(v) = v’y for given weights v:
VN(#(v) — 7 — b(v)) =% N(0,v'Qv + 02)

where b(v) = v'pu — 7 = V' FE, is the first order bias term coming from correlations v'F'
between the weights and the confounding factors over time; and correlations between the
treatment D; and the unobserved characteristics A; over the cross section, captured by
&). The limiting variance is determined by the choice of v through the quadratic form of
Q = FX, F'+3,, and treatment effect heterogeneity o2 that is not affected by the choice of
v. Since vt = 0, the estimator is (by construction) invariant to unobserved heterogeneity
that is constant over time, including the unit fixed effects f;.

The second point of Lemma 1 gives an explicit expression for the minimizer of a
quadratic form under linear equality constraints. Applied to X = [e,t], A = Q and
c = (1,0)', it yields the weights v* = Q7! X (X'Q "' X )~ 'c. They define the time-weighted
DiD estimator 7(v*) which has the smallest variance 02, = (v*)'Quv*+02. Unbiasedness is
immediate when &, = 0. It follows that 7(v*) is the efficient time-weighted DiD estimator
of 7 when parallel trends holds for all pre-treatment periods. In other cases, unbiasedness
requires F'v* = 0. Naturally, this is only the case under further assumptions on the factors,

which are discussed in Section 3.2.

Consider now the properties of the feasible TWDID estimator 7(v). The estimated
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weights © obtained from €2 converge in probability to v*, and therefore F(0) 25 74 b(v*).
However, the weight estimation uncertainty affects the limiting variance of 7(v), which

becomes clear when decomposing
7(0) =7+ b(v") + (0 — V) F&, + d'v* + Oy(1/N)

with @ = y — p. The weight estimation uncertainty © — v* affects the limiting distribution
unless £, = 0. This is in line with the properties of two-step estimators, discussed for
example in Newey and McFadden (1994). Generally, estimation uncertainty in the first-
step © —v* affects the limiting distribution of the second step estimator 7(v) whenever the
second step estimand 7 4 b(v) depends on the nuisance parameter v. In this setup this is
the case whenever &) # 0.

Asymptotic normality of 7(0) can be established by writing v and 7(v) as the solution
the cross-sectional regression problem introduced in (4). This is done in the following

theorem.

THEOREM 1. Suppose Assumptions 1-5 and 7 hold. Let @ = (1,v',7)', v = vqiq — QV
and z; = (y}, D;) and w; = (D;, Yipre, 1)'. Then 0 = (7(9),0,7)' is the unique solution, to
> g(z;0) = 0 with g(z:;0) = p; ' w; (Vi poss — w'0). Moreover,
VN - 6") -5 N(0,%), S=H 'SH'

with 0* = (7 4 b(v*),v*,7*), H =lim 1 3. Flw,w]|F] and S = lim £ 3", E[ww}(Y; post —
w]0")2|F). The sandwich estimator satisfies & = H'SH ' -y %,

We see that 7(v) is asymptotically normal around 7+ b(v*). Appendix B.2 derives the
limiting variance explicitly as

02 = 0hin + ENF'SFE + E\F'S; 5

where 3, is the limiting variance of v and X ; the covariance between 7(v*) and ©. The

take-away is that for €, # 0, weight estimation uncertainty keeps the variance of 7(v)
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2

above the lower bound o7, even asymptotically. A naive plug-in estimator ¥’ Qo 2

2

o therefore underestimates the variance of 7(v), and has to be adjusted for the weight
estimation uncertainty. The last statement of Theorem 1 assures that the sandwich variance
estimator 3 correctly captures all sources of uncertainty.

A corollary of Theorem 1 is asymptotic equivalence of 7(v) and 7(v*) under ‘small’
violations of parallel trends, i.e. when v N&, — 0. Therefore, 7(v) is efficient in the

class of time-weighted DiD estimators when parallel trends violations are asymptotically

negligible.

COROLLARY 1. Suppose Assumptions 1-5 and 7 hold. Then /N (#(9) — ) N N(0,02:.)

min

as n — oo with o2

min

=c(X'Q71X) e the efficiency bound of time-weighted DiD estima-

tors provided that vV N&, — 0.

Practically, this result promises efficiency gains in conventional event-study settings, and
encourages applied researchers to use TWDID whenever they are confident that parallel
trends holds across all periods. This finding is similar to results Marcus and Sant’Anna

(2021), who study the optimal GMM estimator of the ATT under this assumption.

3.2 Conditions for bias reduction upon conventional DiD

I proceed with a formal discussion of the remaining bias b(v*) that occurs when parallel
trends does not hold with respect to all pre-treatment periods, i.e. &€, # 0. I derive an
analytical expression of the bias b(v*), which leads to sufficient conditions under which
TWDID is guaranteed to have a smaller bias than conventional DiD.

Consider first a case in which TWDID is guaranteed to be asymptotically unbiased.
Recall that the variance-minimizing weights v* solve min,ey v'(FX\F’ + ¥.)v. The id-
iosyncratic noise ¢;; regularizes the time weights towards noise-minimizing weights v. =

arg min, .y v'3.0v = X' X (X’3-' X ) 'e, which minimize the component of the variance
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in 7(v) attributable to idiosyncratic noise. Moreover, v. are the weights one would obtain
in the unfavourable case in which the variance €2 carries no information about the confound-
ing factors. When v, is uncorrelated with F', they coincide with the variance-minimizing
weights v*. Then, TWDID is asymptotically unbiased because b(v*) = vIF§&, = 0 irre-
spective of the loading imbalance &,.

The condition v.F = 0 imposes parallel trends with respect to the noise-minimizing
weights v.. It requires that the dynamics in the idiosyncratic errors are perfectly aligned
with the factors. For example, white noise errors (3. = O'?I and v. = Voyf) are perfectly
aligned with factors satistying fr = Tio ZtSTO f+. In that case, TWDID is asymptotically
unbiased, and Theorem 1 shows it is asymptotically equivalent to the 2wfe estimator except
for additional uncertainty coming from the weight estimation.

In general, the variance-minimizing weights v* reduce the correlation with F' compared
to noise-minimizing weights v.. In case of one factor, this immediately implies that TWDID
has a smaller asymptotic bias than 7(v.), i.e. |b(v*)] < |b(v.)|. The following lemma
formalizes this result in the general case based on an analytical expression of the bias

b(v*).

LEMMA 2. Let F = 3. 'PF)?, X = 277X, 6. = B0, and €, = £,'%¢,. Suppose
Assumptions 1-6 hold. Then b(v*) = ¥.F(I + 8)7'€y, where 8 = F'M4F has full rank
rand Mg =T — X(X'X)"'X'. This implies b(v*) = 0 if v.F = 0 and |[b(v*)| < |b(v.)|

ifr=1.

This lemma formally shows how the bias of TWDID depends on the bias under noise-
minimizing weights and the signal strength in the covariance matrix. This is best illustrated
in case of one factor f. The bias then simplifies to b(v*) = b(v.)/(1+s?) with s = f' Mg f
the signal strength in the covariance matrix and b(v.) = v.f&, the bias under noise-

minimizing weights v.. Assumption 6 implies that s> > 0, so TWDID decreases the
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magnitude of the bias relative to the estimator 7(v.) by a factor of 1+ s*. This means that
TWDID is guaranteed to have a smaller bias than the 2wfe estimator if the errors are i.i.d.
over time; and a smaller bias than the canonical DiD estimator under random walk errors.
Aside specific cases of X, the bias is smaller than that of 7(vgiq) whenever |b(v.)|/|b(vaia)| <
1 + s2. Clearly, TWDID is guaranteed to have a lower bias if DiD has a larger bias than
7(v.), even if there is no signal. When [b(v.)| > |b(vagia)| > 0, the bias is smaller as long
as the signal s? is sufficiently strong. TWDID therefore has larger bias only if the noise-
minimizing weights point in a less favorable direction than wvg;q and the variance carries

too little signal to push the weights towards reducing the bias.

3.3 Consistency under drifting factors

A key observation is that the bias b(v*) vanishes when the factor strength increases. A
natural way to formalize this is to show consistency of 7(v) when the factor strength
increases with the sample size. I scale the factors in (1) by a signal-to-noise ratio parameter
o > 0, and consider asymptotic sequences along which (N, c?) — 00.?

The formal result of this section exploits that under Assumption 6 the factors are as
good as observed from the covariance matrix Q = 0?2 FX,\F’' + X, when o? is large. Using
the Woodbury (1949) identity for matrix inversion, one can expand 27! = 251/2MUE;1/2,
where the matrix M, = I—o?F(I+0%F'F)~'F’ converges to the orthogonal projection on
the column space of the (efficiently weighted) factors Mz = I —13’(13” F)_lﬁ" . This happens
“fast enough” to eliminate the correlation with the factors, in a sense that c M, F — 0.

In fact, the variance-minimizing weights v* converge to the weights implied by the

30ne can additionally impose weak loading imbalances £,0 = O(n~'/?). Then the asymptotic bias of
fixed weights estimators v/ Nb(v) remains bounded, while TWDID is asymptotically unbiased v Nb(v*) —

0.
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infeasible) factor-augmented GLS estimator 7(vg) = v,y. These are are given by
0

v =3 ' X (X!21X,) e, = argminv' T, v

veVy

where X, = [e,¢, F] and ¢, = (1,0,0). By construction, vy is uncorrelated with the
factors and thus eliminates the confounding factor structure without having to estimate
the loadings explicitly. As a result, TWDID is consistent as (n,0?) — oo. This can also

be seen from the bias expression of Lemma 2
b(v*) = o' F(I 4+ 0°S) '€, =0 (o/(1+ 02)) ,

showing that the bias diminishes for diverging factors.

Another observation is that the bias vanishes under weak factors, that is, when o2 — 0.
In that case, the factor structure disappears from the mean of y and from the covari-
ance matrix 2 — .. The weights v* converge to the noise-minimizing weights v., thus
remaining well-defined. Therefore, the TWDID estimator consistently estimates 7 under
weak factors. While this is the case for any other time-weighted DiD estimator, TWDID
achieves the smallest variance within this class. Corollary 1 reaches the same conclusion
for a weak loading imbalance vV N&, — 0, the difference being that then the factors still
appear in the covariance matrix.

These results are summarized in the following theorem, which is the counterpart of

Theorem 1 for drifting factor asymptotics.
THEOREM 2 (Drifting factor asymptotics). Suppose Assumptions 1-7 hold. Then
1. (Diverging factors) If (N,0?) — oo, then v* — vy, b(v*) = 0, and 7(D) 2 7.

2. (Weak factors) If N — oo and 0> — 0, then v* — v, and 7(9) = 7. Moreover,

VN(#(®) — 1) =L N(0, V.Y v, + 02) if the rates satisfy No? — 0.

Similar consistency results for diverging factors have been established for synthetic

control estimators in large 7" panels, for example in Ferman and Pinto (2021). In these
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setups, asymptotically unbiased estimates also requires that the signal dominates the noise
in the limit. This is typically achieved by assuming non-stationary factors while restricting

the time series dependence of the idiosyncratic errors.

4 Monte Carlo Experiments

4.1 Setup

In each replication, I draw data from
Yit = O fr + €t it = PEit—1 + V1 — p*nit (6)

with \;; = &,\D; + v;; and {v;j, Mt }i 5+ 1.1.d. draws from the standard normal distribution.
This incorporates two important parameters that I vary across different simulations. First,
[ vary the autocorrelation parameter p € {0,0.5} to study the effect of persistency in the
error term (while keeping var[e;] = 1). Second, I vary the factor strength oy, including
settings without factors (o) = 0), weak factors (o, = O(1/v/N)), and strong factors
(ox = O(1)). The loading imbalance is fixed at &, = 0.1. That way, the factors strength
and the bias are of the same order, proportional to oy.

I consider up to two factors f; = (fit, far)’, both of which are being fixed across all
simulation settings. The first factor comes from one draw of a persistent AR(1) process.
The second factor is a deterministic, linear trend. Both factors are rescaled to have unit
variance (3, f;; = 1) and are plotted in Figure 1. In settings with only one factor, I set
i = 0.

I compare four estimation strategies. The first is the TWDID estimator, which imposes
only the constraint that the time weights sum to one, allowing them to take negative

values. The second is a restricted version of TWDID (denoted TWDID+), which in addition

requires the time weights to be non-negative. For comparison with conventional approaches,
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Figure 1: Factors used in the Monte Carlo simulations. The first factor is a realization of a gaussian AR(1)

process with autocorrelation 0.8. The second factor is a linear trend.

[ also consider the two-way fixed effects (2wfe) estimator, which assigns equal weight to
all pre-treatment periods. Finally, I include the synthetic difference-in-differences (SDID)
estimator, which combines non-negative time weights that sum to one with unit weights

estimated from the pre-treatment periods as defined in (5).

4.2 Results

Figure 2 shows desirable properties of the time-weighting approach compared to not weight-
ing or unit weighting. As expected, TWDID performs better than 2wfe in all settings, both
in terms of bias and RMSE. Consider first the case of one factor (top rows). Here the post-
treatment factor is smaller than the average pre-treatment factors (Figure 1). Because the
factor affects treated units more than untreated units (&£, > 0), 2wfe has a negative bias.
The magnitude of the bias is proportional to the factor strength. TWDID successfully
reduces the bias and RMSE independently of the factor strength. Even in absence of fac-
tors (o) = 0), TWDID improves upon the unbiased DiD when there is persistency in the

errors due to its efficiency properties. SDID generally requires a stronger signal before it
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Figure 2: Simulated RMSE (top panel) and bias (bottom panel) of four estimators: two-way fixed effects
(2wfe), restricted time-weighted DID (TWDID+), TWDID, and synthetic DID (SDID). The horizontal

axis depicts different levels of the factor strength o). The data is generated by (6) with fixed factors.
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improves upon 2wfe. Moreover, it can exacerbate bias and RMSE compared to TWDID
and 2wfe when factors are weak, as the results in the single factor case suggest. With two
factors, however, the comparison is more mixed. While TWDID and SDID exhibit compa-
rable RMSEs, SDID has a lower bias. This suggests that unit weights can be successful in
reducing bias further even in short 7.

Overall, the simulations indicate that TWDID can reduce bias and RMSE relative
to 2wfe across different levels of factor strength and error persistence. These findings
highlight the advantages of TWDID in short panels. However, they should be interpreted
as illustrative for the considered factor dynamics rather than taken as universal across
all possible factor structures. Appendix C contains additional Monte Carlo Experiments
showing desirable coverage rates, and has settings in which the factors are redrawn from a

gaussian process.

5 TWDID in practice: the effect of the NOx Budget

Trading Program

I revisit Deschenes et al. (2017) studying the effect of the NOx Budget Trading Program
(NBP) 2003-2008 on NOx emissions. It entailed a cap and trade program to reduce NOx
emissions from power plants. It was only active in the summer months May - September in
the years 2003-2008 in 19 states in the US. In 2003 the program was active only in a subset
of the 19 treated states. States not adjacent to the NBP states remain as non-treated states
(22 in total).

Data on NOx emissions is available on county level for N = 2539 counties from 1997-
2007. We observe N; = 1,354 counties in the treated states and Ny = 1,185 in the
untreated states. Per county and year we observe data for the seasons summer and winter,

where summer is defined as May - September.
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Specification. Consider the interactive fixed effect model
2008
Yist = Z T Dyt (§) + it + Vis + N ft + Eist
j=2004

with D, (7) = 1(i € Nq,t = j,s = 1) a post-treatment dummy of year j indicating whether
NBP is operating in county i in season s = 0,1 (winter, summer). p;, Vs are county-year
and county-season fixed effects, respectively. fs; are season-year specific common shocks
that affect the emissions of county ¢ with intensity \;. ;5 is an idiosyncratic error term.
The special case A; = X resembles the additive fixed effect model that Deschenes et al.
(2017) use. In that case the factor structure reduces to a season-year fixed effect.

As a preliminary step I eliminate county-year fixed effects p;; by considering the differ-

ence between summer and winter observations

2008
Yit = Yirt — Yiot = Z T2 Di(5) + Bi + Nife + e
§=2004
with 5; = vy — vy, fr = flt — fgt and €;; = £;11 — E;0¢- The application matches the setting

of this paper under the assumption that the program does not affect emissions in the winter

months in the treated years.

Evidence against parallel trends. I first obtain evidence against £, = 0 by considering
how the difference in average NOx emissions g; = gt(l) — —§0’ has evolved prior to the

intervention. We can write

?]t:B(l) _B(O)‘i‘&;\ft"i‘Op( ), t<T,

1
VN
so 1; should be constant prior to the treatment when parallel trends holds in all periods
(&x = 0). However, Figure 3 does show variation of ¢ in periods t < Tj. Also a formal test
based on Jpre = N QL Gpre With Qpre/N = at [Ypre] and Gpre = (19105 - - - Ip-1—I10)’

rejects the null of parallel trends in all pre-treatment periods at conventional levels.
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Difference in Average NOx Emissions, NBP vs. non—-NBP Counties
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Figure 3: Difference in average NOx emissions yt( ) yt( ) over time, with 95% confidence band (dashed),

Jpre the statistic testing parallel trends in all pre-treatment periods, distributed as X2 under the null.

Results. 1 estimate the dynamic effects of the intervention, applying the TWDID ap-
proach sequentially for each post-treatment period j = 2004, ...,2008. For comparison I
also computed the canonical DID estimator (all weight on the most recent pre-treatment
period 2002) and the 2wfe estimator, which uses equal time weights. I omit the year 2003
from the analysis because not all treated states had fully implemented the program by
then. For a given post-treatment period T} € {Ty + 1,..., T}, I implement all estimators
using the regression interpretation presented in (4). The corresponding regression equation
is
Yir, — Yiro = 7 + TDi + Yyl + U

With ¢ pre = (Yi1 — Yizys- - -+ YiTo—1 — Yiz,) denoting the unit-specific pre-trends. In this
specification, the least-squares estimate of 7 is a time-weighted DiD estimate 7(v) = v'y
where the weights v = (—v, /v —1, 1) are determined by the coefficients on the pre-trends
v = (v,...,vr,—1). The DiD estimator corresponds to the least-square estimate of 7
when restricting v = 0, i.e. omitting the pre-trends ¥; pre from the regression. Similarly,
the 2wfe estimator results from restricting v, = 1/7; for all t. The TWDID estimator 7(v)

corresponds to the unrestricted regression, i.e. when ¥; . is controlled for, and observations
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Figure 4: Left: Estimated time weights for each post-treatment period as of (7). Right: Resulting estimates
of 7" and confidence intervals for both TWDID, 2wfe and DiD estimation. J}i and J3*% indicate that

the Wald tests for v* = vgiq and v* = voyge reject at the 1% level, respectively.

are weighted by their inverse propensity score.

The left panel of Figure 4 shows the estimated pre-treatment weights v, used by the
TWDID estimator for a given post treatment period, while the right panel of Figure 4
shows the resulting dynamic treatment effect estimates and their 95% confidence intervals.
Across all post-treatment periods, the weights are significantly different from both vg;q and
Vowfe as judged by the Wald statistics testing the corresponding restrictions on v. Because
7; significantly varies in the pre-treatment periods, the ATT estimate is sensitive to the
choice of weights. While DiD and 2wfe estimation suggest effects of similar magnitude,
TWDID estimation suggests, in absolute terms, smaller effect sizes. Since the weights
are chosen to minimize the variance of the estimator, TWDID estimates are clearly more
precise DID and 2wfe and the resulting confidence intervals are narrower.

These results can be explained by confounding aggregate shocks which affect NOx
emissions differently across counties.

Estimators using fixed weights, such as DID and

2wfe, are therefore sensitive to variations in the shocks before and after the start of the
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program. In contrast, TWDID reduces the influence of the confounding factors on the ATT
estimate under the assumption that the persistency in emissions over time is informative
about those shocks. In this case, the negative pre-treatment weights suggest the presence
of aggregate shocks that cannot fully be accounted for by non-negative weights used by
2wfe and DiD. Accounting for those shocks, TWDID extrapolates part of the pre-treatment
decrease the difference of emissions to the post-treatment periods. The method therefore
attributes smaller share of the observed decrease in emissions to the program itself, leading

to lower point estimates.

6 Conclusion

This paper introduces a time-weighted difference-in-differences (TWDID) estimator for
settings with few pre-treatment periods. Unlike conventional estimators, which use fixed
pre-treatment weights, TWDID assigns variance-minimizing weights determined by the
within-group covariance matrix of outcomes. The proposed estimator is efficient in the
considered class when parallel trends hold across all periods. I introduce violations of
parallel trends through common factors that have heterogeneous effects on the outcome. I
show that the weights reduce the influence of the confounding factors, yielding a smaller
bias than conventional DiD estimators under mild assumptions on the factors. Revisiting
the impact of a cap-and-trade program on NOx emissions, TWDID yields smaller and more

precise estimates than conventional approaches.

SUPPLEMENTARY MATERIAL

Online Appendix Additional results, Proof of Theorems and Lemmas
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